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ABSTRACT 

There are existing wideband communications systems that were built using field 

programmable gate array (FPGA)-based software defined radio (SDR) designs. Despite 

the inherent advantages of these systems, some are functionally restricted by limited 

output bandwidth. This thesis was conceived in order to mitigate the restrictions imposed 

on such designs. This was accomplished by designing an FPGA-based SDR that can 

compress sampled intermediate-frequency (IF) signals. The compression scheme used in 

the final design is based on flexible operator-defined time-frequency bins and 

independent energy thresholds for each bin. The thesis presents basic design concepts 

that influenced the development process, the final design implementation created using 

Xilinx’s System Generator software, and the tests used to verify the final design’s 

functional capabilities. 
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EXECUTIVE SUMMARY 

Government and military organizations rely heavily on the ability to transmit and 

receive radio signals via communications techniques that incorporate varying degrees of 

complexity. As a result, advances in communications techniques and digital signal 

processing (DSP) technology create an ongoing requirement for research and 

development (R&D), which is both costly and time consuming. These factors contribute 

to the fact that new radio communications systems often lag behind their operational 

requirements. In the traditional digital hardware development model, application-specific 

integrated circuits (ASIC) are designed in order to optimize a radio’s performance 

parameters. The downside of this model is that hardware optimization generally requires 

replacing hardware, which is both costly and logistically challenging.  

The growing field of software defined radio (SDR) addresses some of the 

limitations imposed by traditional ASIC implementations. SDR designs are developed 

such that software is used to configure hardware, as needed, to perform different 

functional operations. This unique capability allows newly developed radios to provide 

greater technological flexibility. Field programmable gate arrays (FPGAs) have become a 

key industry component for the development of the hardware logic operations performed 

in SDR-based systems. As a result, R&D efforts have started to incorporate FPGA-based 

designs where operationally reasonable. There are existing wideband communications 

systems that are especially well-suited for these designs. Unfortunately, some of these 

systems are functionally restricted by relatively limited output bandwidths.  

This thesis was conceived to mitigate the restrictions imposed on FPGA-based 

designs by external input-output (IO) bandwidth mismatches. Efforts were focused on 

understanding the requirements to design, build, and test an FPGA-based SDR that could 

process sampled wideband intermediate frequency (IF) signals and compress the input 

based on reprogrammable parameters. IF signals are often used in communications 

systems to modulate and process a carrier signal at a frequency lower than the radio 

frequency (RF) transmission band. The lower IF frequencies allow modulated signals to 
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be processed at a reduced cost in terms of operational speed and hardware requirements. 

When appropriate, IF signals can be up-converted to the RF band for transmission or 

down-converted from the RF band for processing purposes.   

The design concept was based on compartmenting sampled IF data into operator-

defined time-frequency bins and then comparing the energy in each bin to its independent 

energy threshold, also specified by the operator. The fast Fourier transform (FFT) served 

as the central element of the signals analysis process. Based on this framework, signal 

data related to bins without sufficient energy are discarded.  This process resulted in a 

flexible, automated compression scheme that can more efficiently utilize the output 

capacity of a system affected by an IO bandwidth mismatch.  

The algorithm was designed and tested using Xilinx’s System Generator (SysGen) 

software, which functions as an integrated component of MathWorks’ Simulink 

environment.  The tool was also used to synthesize the design, perform the place-and-

route functions, and generate the binary file that provides the design's configuration 

information for the target FPGA. SysGen provided a layer of abstraction that reduced the 

requirement for programming experience in a hardware description language (HDL). If 

the design had more stringent timing requirements, the ability to code in a HDL would 

have been more important.  

Two versions of the algorithm were built and tested. The first utilized an 8-point 

FFT, which simplified analysis efforts. The second version utilized a 1024-point FFT and 

helped verify the requirements for scaling the design. Both versions were tested using 

single-frequency and multi-frequency input signals, without restrictions on the output 

memory. This ensured the basic compression scheme operated properly. The 1024-point 

algorithm was used to verify the design could automatically adjust its operational mode if 

available storage capacity became limited. Testing provided valuable insights regarding 

the effects and workarounds for machine epsilon. Machine epsilon is defined as the 

smallest positive number that a digital system can recognize and generate.  When 

combined with rounding or truncating, machine epsilon can lead to numerical 

calculations that should mathematically equal zero but result in other values. If not 
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properly addressed, this digital error could be catastrophic to a design’s operational 

utility. Testing also verified the design’s desired functional operations. 

Although the final design operated as expected, it has performance limitations that 

should be recognized and considered. All of the development tests were conducted such 

that the digital input frequencies and the defined bin frequencies were an exact match. If 

frequencies that did not match the FFT window, i.e., frequencies that did not have an 

integer number of cycles per FFT window, were used there would be a slight smearing 

effect in the frequency domain.  It is assumed that this effect is minor, and would not 

significantly impact the efficacy of the algorithm.  The tests also assumed the input signal 

and the SDR shared the same sample frequency. If this were not the case, the 

implementation could correct for this by appropriate interpolation or decimation, or 

similar multirate signal processing. 

Based on the resources available at the beginning of this effort, the SDR was 

developed for the Xilinx, Virtex-4 FPGA. While this can potentially affect the portability 

of the design, only one component was used that is not backward compatible to the 

Xilinx Virtex-1 FPGA.  As a result, the workaround requires only minor changes to two 

affected design components. The research and development process used for this thesis 

resulted in a simple, FPGA-based signal compressor that can be tailored by operators via 

parameter settings. The design can facilitate more efficient use of the output capacity 

available to systems affected by external IO bandwidth mismatches. Despite its simple 

nature, the SDR and its components can be optimized and used as a platform for future 

development efforts.  
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I. INTRODUCTION 

A.  BACKGROUND 

There are government and military organizations that rely heavily on the ability to 

transmit and receive communications modulations that incorporate varying degrees of 

complexity.  As a result, advances in communications techniques and digital signals 

processing (DSP) technology create an ongoing requirement for research and 

development (R&D) that is both costly and time consuming. As mission requirements 

shift and resources become limited, be it budget constraints or physical space for a new 

system, prioritization of supported technologies becomes critical.  

Regardless of how these decisions are made, when radio communications systems 

are developed into digital hardware platforms they have traditionally been designed with 

application-specific integrated circuits (ASIC) [1].  ASIC designs are beneficial in that 

they are built to optimize a radio’s performance parameters such as speed, power 

consumption, physical size, etc. However, since ASIC hardware is optimized for a 

specific set of technologies, once a system has moved through the R&D process into 

production there is limited flexibility to augment its capabilities. Keep in mind that it 

often takes years to get from a design concept to the production phase [2]. As a result, 

there is a lag between the generation of an operational requirement and the availability of 

a viable system.  In light of the fact that communications techniques and the capabilities 

of digital processing systems are constantly changing, the delays and limitations 

associated with traditional communications hardware development requires special 

attention. 

A growing field within the communications industry referred to as software radio 

provides an ideal solution for the limitations of ASIC hardware development. As opposed 

to working with hard-wired electronic components that are designed for specific 

modulation techniques and data packet structures, software radio designs offer varying 

degrees of flexibility. Within industry, the term software radio is often used to describe “a 

radio that is substantially defined in software and whose physical layer behavior can be 
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significantly altered through changes to its software” [3].  This means that the radio’s 

functional capability can be changed, on demand, based on existing operational 

requirements.  

In comparison to traditional radio development, the physical hardware used for 

SDR designs requires a more dynamic range of flexibility and capability [3].  Field-

programmable gate arrays (FPGA) provide a high degree of flexibility with respect to 

implementing logical algorithms in hardware. As a result, many new radio development 

efforts have started to incorporate FPGA-based SDR designs where it is operationally 

reasonable. There are some existing wideband communications systems that are 

especially well suited for these designs as they can potentially accommodate a large 

spectrum of communications techniques. Unfortunately, some are functionality restricted 

by relatively limited output bandwidths.  

B. OBJECTIVE 

This thesis was conceived to help mitigate the restrictions imposed on FPGA-

based designs by external input-output (IO) bandwidth mismatch. R&D efforts were 

focused on the requirements to design, build, and test an FPGA-based SDR for a system 

that can receive wideband intermediate frequency (IF) signals and generate output with 

only specific portions of the original input signal. IF signals are often used in 

communications systems to modulate and process carrier signals at a frequency lower 

then the radio frequency (RF) transmission band. The lower IF frequencies allow 

modulated signals to be processed at a reduced cost in terms of operational speed and 

hardware requirements. When appropriate, IF signals can be up-converted to the RF band 

for transmission or down-converted from the RF band for processing purposes.   

Based on the design requirements, the signal compressor’s output must be 

determined in a dynamic, automated fashion in accordance with programmable control 

parameters and relevant properties of the received signal. In doing so, the SDR will better 

utilize a wideband system’s limited output bandwidth.  
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C. SDR DESIGN OVERVIEW 

The basic design goal was to develop a software defined radio (SDR) that is able 

to process wideband IF composite signals, compress the signals based upon operator-

defined parameters, and store the relevant information for future processing. Figure 1 

through Figure 3 provide a graphic representation of the general concept. As a high-level 

example, Figure 1 depicts the time-frequency distribution of IF energy received by the 

radio. The boxes in Figure 2 represent three distinct time-frequency bins of interest to an 

operator. When all bins are considered together, they are referred to as a bin set. Prior to 

initializing the SDR, operators will define independent thresholds for each bin. Assuming 

the top two bins in Figure 2 meet or exceed their established thresholds and the bottom 

bin does not, Figure 3 shows the compressed data set that would be stored for future 

processing. 

 

 

Figure 1 .  Received IF Energy (Conceptual). 
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Figure 2 .  Signals of Interest (Conceptual). 

 
 

 
Figure 3 .  Compressed Output (Conceptual). 

 
 

A simple scheme is used to implement the compression mentioned above. The 

scheme is built around the idea of bins being defined by time and frequency coordinates. 

Each bin (b ) is defined with independent parameters. Using Figure 4 to illustrate the 

concept, the first bin, 1b = , is defined between frequencies 1 2and f f  for a duration of 1T  

seconds, while the third bin, 3b = , is setup to analyze frequencies 3f  through 4f  for a 

duration of 3T  seconds. The main point is that each bin can be tailored to analyze a  
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unique set of IF signal characteristics. This flexibility is provided in order to enable 

tailored detection of different modulation techniques, ranging from burst communications 

to frequency-hopped transmissions.   

 

Figure 4 .  Bin Dimensions (Conceptual). 

In practice, an operator sets frequency and duration parameters for each bin and 

then establishes independent energy thresholds for each. With this information, the radio 

is able to process and analyze IF signals and then store information relative to bins that 

meet or exceed operator-defined thresholds. Information associated with bins that do not 

meet established thresholds will be discarded. In this way, signal information is 

compressed. 

D. RELATED WORKS 

The work done for this thesis is not directly associated with any other efforts, but 

it does relate to two ongoing areas of research and development: spectral analysis of 

signal energy and the development of FPGA designs using Xilinx’s System Generator 

software tool. 

As outlined in the previous section, the SDR design for this thesis is built on the 

concept of evaluating the energy in IF signals with respect to time-frequency bins. The 

time-frequency (TF) construct that was implemented in the final design was based on a 

simple process that will be explained in Chapter III, but it is worth noting that there are 
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other well-established algorithms for spectral analysis of time-varying (TV) signals. TV 

signals are common in real-world applications and have frequency properties that change 

with time [4]. Some examples include the impulse response of a wireless 

communications channel, radar and sonar acoustic waves, vocals in speech, engine noise, 

and jamming interference signals.  

Although outside the scope of this thesis, there are numerous methods for 

analyzing TV signals. As a brief introduction, the two most common methods are the 

Wigner distribution and spectrograms [4]. However, depending on the target and applied 

signal properties, other classes of TF analysis may be better suited for providing accurate 

signal representations. Some of the more commonly referenced classes include, short-

time Fourier transforms (STFT), quadratic time-frequency transforms, and wavelet 

transforms [4,5,6,7,8]. Each class has a set of characteristics that dictate how well it 

processes different TF signatures.  Since most applications are designed to extract 

specific signatures, this should help guide the choice of analysis methods.  

As for Xilinx’s System Generator (SysGen) software, a brief description of the 

tool and its functional application are provided in Chapter II. The major significance of 

the tool is that it enables a model-based method for developing and testing FPGA 

designs. This capability greatly reduces the requirement for specialization with the 

languages and tools traditionally used for FPGA designs [1].  As a result, hardware and 

software engineers of varying backgrounds now have the ability to utilize the flexibility 

and parallel computing capacity that are inherent to FPGA hardware platforms [9, 10]. A 

short, diverse sample of applications that SysGen has been used to develop includes: An 

FM demodulator [11]; a GPS receiver channel [12]; a reconfigurable video encryption 

system [13]; a non-coherent frequency shift keying (FSK) transceiver [14]; and a motor 

incremental shaft encoder [15]. The tool has gained so much popularity that tools and 

design concepts are being developed by external sources to work with the Xilinx software 

[16, 17]. 
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E. THESIS ORGANIZATION 

This introductory chapter provides brief insight as to the relevance of software 

defined radios and FPGAs in today’s rapidly changing communications environment.  

The chapter then highlights the effects of external IO bandwidth mismatches on modern 

communications radios and introduces the design concept used in this thesis to mitigate 

the associated technical issues.   Finally, the chapter highlights time-frequency analysis 

options and the broad applicability of Xilinx’s System Generator software.  

Chapter II, Design Considerations, highlights the key concepts and tools used to 

develop the design. The chapter provides a brief overview of Fourier analysis, FPGAs, 

FPGA design flow, and the Xilinx System Generator (SysGen) software, which was used 

as the development environment.  

Chapter III, Conceptual Design Model, provides a conceptual description of the 

modules and data management strategies used to develop the SDR design. The major 

modules discussed include Bin Energy Calculation, Bin Threshold Analysis, and Data 

Management.  

Chapter IV, Design Implementation Details, focuses on implementation of the 

conceptual model in the SysGen development environment. Detailed descriptions of each 

design element are provided in context with its parent modules and any interrelated 

components.  

Chapter V, Design Testing, explains the tests used to validate the designed SDR’s 

functional operations. The chapter then provides test results and analysis.  

Chapter VI, Conclusion, summarizes the body of work captured in the thesis and 

then provides recommendations for future work that could enhance the SDR design. 
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II. DESIGN CONSIDERATIONS 

In order to design the SDR that was discussed in the previous chapter, a few key 

concepts and design tools proved to be instrumental. This chapter will provide a brief 

overview of these elements to include Fourier analysis, FPGA Basics FPGA design flow, 

and Xilinx’s System Generator tool.  

A. FOURIER ANALYSIS  

When working with electronic signals, it is often necessary to analyze the 

different frequencies present in the signal. To do so, it is common practice to utilize some 

form of Fourier analysis to translate the signal from its time domain representation into a 

frequency domain representation. The Fourier transform (FT) and its inverse (IFT) are 

ideal algorithms when working with continuous signals. For digitally sampled signals, the 

discrete Fourier transform (DFT) and the inverse discrete Fourier transform (IDFT) are 

ideal for working between domains.  Definitions for each of the transforms are provided 

below [18].  

The function ( )g t , where t  represents time, will be used in this section as the 

time domain representation of the signal. The Fourier transform, ( )G f , of the signal, 

where f  is an analog frequency, is the frequency domain representation of the signal.   

 2( ) FT{ ( )} ( ) j tfG f g t g t e dtπ
∞

−

−∞

= = ∫  (II.1) 

The inverse Fourier transform can be used to translate back to the time domain. 

 2( ) IFT { ( )} ( ) j tfg t G f G f e dfπ
∞

−∞

= = ∫  (II.2) 

Since the design for this thesis will work with signals that are sampled at a specific 

sample frequency ( sF ), the signal must also have a sample-based representation, [ ]g n . 

The functions ( )g t  and [ ]g n  are related based on the system's sample period, sT , which 

is the inverse of the sample frequency. 

 [ ] ( )sg n g nT=  (II.3) 
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To better understand the relationship between ( )g t  and [ ]g n , refer to Figure 5 [18]. 

 

 

Figure 5 .  Time-Based vs. Sample-Based Signals. 

The sample-based representation of the signal is used in the DFT algorithm to 
derive the digital frequency domain representation,  

 
1

(2 / )

0

1[ ] [ ]
N

j N kn

n
G k g n e

N
π

−
−

=

= ∑  (II.4) 

where N  equals the number of samples in the analysis period and k  represents a digital 

frequency between 0 and 1N − . The digital frequency can be mapped to an analog 

frequency based on the sample frequency, and the analysis period, N  

 skFf
N

=  (II.5) 

The IDFT can be used to translate from the frequency domain back to the sample-based 

representation,  

 
1

(2 / )

0
[ ] [ ]

N
j N kn

k
g n G k e π

−

=

= ∑  (II.6) 

where n  is between 0 and 1N −  [18]. 
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For this design, three properties of Fourier analysis need to be highlighted. First, 

when a signal is sampled in the time domain, its DFT is periodic, with period N . As a 

result of this repetitive relationship and in accordance with Nyquist’s sampling theorem 

[3], the signal’s bandwidth ( bF ) must be less than half the sample frequency, sF .  

 
2

s
b

FF <  (II.7) 

Otherwise, the frequency spectrum can not be represented without interference called 

aliasing. This fact dictates that / 2sF  is the highest analog frequency that should be 

evaluated using the DFT.  The second property worth noting relates to the analysis 

period, N , of the DFT. More samples in an analysis period yields greater frequency 

resolution. The third property relates to the conjugate symmetry of the DFT. If the 

sampled signal, [ ]g n , is real-valued, then its DFT has conjugate symmetry, i.e., [18] 

 [ ] *[ ]G k G N k= − . (II.8) 

Another point worth noting is the DFT as presented in Eq. (II.4) requires 
2N numerical operations for the straightforward calculation.  Several algorithms referred 

to as fast Fourier transforms (FFTs) were created to generate the numerical values of the 

DFT, but in fewer operations. As opposed to 2N  operations, FFT algorithms require only 

log ( )N N   operations for a period of N  samples [18]. 

B. FPGA BASICS 

Field-programmable gate arrays (FPGAs) are semiconductor devices containing 

logic components and interconnects that are both programmable. Together, these 

elements can be combined to perform simple gate level logic operations (AND, XOR, 

etc), or more complex combinational logic functions.  Although FPGAs are usually 

slower and draw more power than ASIC designs [1], the ability to reprogram an FPGA 

gives the device great versatility and inherent advantages. For instance, it generally takes 

less time to develop an FPGA based product for the market place [2,10]. FPGAs allow 

developers to upgrade systems and fix bugs without requiring hardware changes and with 

less design cost. As an additional benefit, the architecture of an FPGA enables designs to 

perform multiple computational operations in parallel.  Parallelism allows for 
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considerable data throughput at relatively low clock rates. These characteristics have 

proven especially useful in the fields of aerospace and defense systems, ASIC 

prototyping, digital signal processing, and software-defined radio (SDR) [10]. 

C. FPGA DESIGN FLOW 

The design process for working with an FPGA can generally be broken into four 

basic steps. First, define and verify the functional behavior that the hardware is expected 

to implement. Next, synthesize the design so the logical description is translated into a 

structural model. Once synthesis is complete, implement a process called place-and-route 

and generate a binary (bin) file, which contains the configuration information that will be 

loaded onto the physical FPGA platform. Finally, load the bin file onto the target 

platform and test the design using physical signals, as opposed to computer generated 

stimulus [19,20,21]. 

1. Define and Verify Functional (Logical) Behavior  

In simple terms, an FPGA’s functional behavior is a model that defines the 

system’s high-level logical operation.  This model defines system inputs, the process and 

order for working with the relevant signals, and system outputs. It is important to note 

that this high-level model should consider all relevant requirements such as physical 

constraints, performance, interface, cost, power, etc. Once all these elements are put into 

the proper perspective, designers can effectively define and test the logical operations of 

their desired system.  

In order to define functional behavior, designers select the best suited logical 

components, or build them if required. Then component connections are established in 

conjunction with a meaningful order of operations. There are a variety of tools available 

for working through this process, but they all must capture the design parameters using a 

hardware description language (HDL). It is worth noting that there are two industry 

standard HDLs: Verilog and Very High Speed Integrated Circuit (VHSIC) Hardware 

Description Language (VHDL).  There are advantages to each, but that discussion is 

outside the scope of this thesis. Regardless of which language or tools are used to define 
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functional behavior, it is important to ensure all the intended logical operations are 

performed. Therefore, as the system is being designed, it is wise to build and run 

simulations as an iterative process. 

2. Synthesis 

Synthesis is a two-step process that takes a high-level behavioral model and maps 

it according to the design’s established interconnections. There are a variety of synthesis 

tools on the market, but their principal functions are all the same.  The first step in the 

synthesis process involves verification of code syntax used in the behavioral model. Once 

the syntax is deemed correct, the functional description is translated to a structural model. 

This new model is captured in the form of a netlist, which defines connections and 

constraints between the components in an electronic design.  

3. Place-and-Route (PAR) 

The next step toward the physical implementation of the design is referred to as 

Place-and-Route (PAR). During the PAR phase, connections outlined in the netlist are 

translated into gate level logic that consisting of lookup table (LUTs), flip flops (FF), 

memory blocks, and input/output (IO) modules.   This process is directly correlated with 

the target FPGA. Point being, if the same netlist were used in multiple FPGA types, the 

PAR results would be unique for each. The translation of connections serves as a bridge 

between the logical design and the physical implementation. The output of the PAR 

process is used to generate the .bin file that is loaded onto the target FPGA.   

4. Testing 

Once the .bin file is loaded onto the target platform, the final step in the design 

process involves verifying the FPGA correctly implements the configured operations 

within the required specifications.   
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D. SYSTEM GENERATOR (SYSGEN) 

SysGen is a schematic based design tool that enables graphic modeling and 

simulation of FPGA behavior. The software suite can also be used for synthesis, PAR, 

and generation of the binary file that is loaded onto the target FPGA board. The software 

suite was designed to work seamlessly within MathWorks’ Simulink modeling 

infrastructure. SysGen provides libraries of optimized Intellectual Property (IP) cores that 

can be graphically connected and configured.  An IP core is a reusable block of code, 

often a generic netlist that protects a vendor against reverse-engineering.  Throughout this 

paper, System Generator’s IP cores are referred to as SysGen modules. The SysGen 

libraries are integrated into the Simulink library. When a library is selected, the SysGen 

sublibrary icons are clearly distinguishable by an outlined ‘X’ icon that indicates 

"Xilinx." 

In a fashion similar to Simulink, all SysGen modules can be configured by double 

clicking the associated icon and updating the appropriate parameters.  A major distinction 

for SysGen modules is that each has HDL code embedded in its definition. This 

minimizes the developer’s requirement to generate code for each independent 

component. This layer of abstraction can reduce development time and the learning curve 

required for basic systems design. If a necessary component does not exist in the SysGen 

library, it is possible to develop a software algorithm using MATLAB code (M-code) and 

later use SysGen’s functional capability to translate the code into the desired HDL format 

(VHDL or Verilog).  This functionality is enabled by the SysGen M-code module shown 

in Figure 6. Once an M-code algorithm is developed and associated with a SysGen M-

code module, it performs its designed logical behavior in concert with the other SysGen 

modules in a design. Despite the obvious benefits of the SysGen suite, Xilinx does not 

recommend its use as a complete replacement for HDL coding. They encourage hands-on 

coding for parts of a design that require management of internal hardware clocks [20].  
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Figure 6 .  SysGen M-code Module. 

As a visual overview of how the SysGen suite works, observe Figure 7. The red 

box in the upper left hand corner contains a model designed using Simulink components. 

The system multiplies a sine wave by a random number and then adds a constant to the 

product. The final output signal can then be viewed graphically using the Simulink scope. 

 

Figure 7 .  Simulink to SysGen Comparison. 
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The system contained in the black box is functionally identical to the Simulink 

model, but it is built using SysGen modules. The only major difference is that the System 

Generator model requires Gateway modules to signify FPGA IO ports. It also requires the 

SysGen System Generator module, circled in green, which is used to initialize the model 

and specify how code generation and simulation should be handled. Assuming all other 

parameters in the two models match, their simulation results would be identical.  This 

commonality allows SysGen simulations to be compared to the bench mark results 

generated from a Simulink models. It can also reduce the effort normally required to 

write test benches for HDL designs. 

 Once a SysGen design’s functional behavior has been tested to satisfaction, the 

software suite can then generate several useful system level outputs to include HDL, a 

netlist, or even a .bin file. To specify the desired output, a designer simply selects the 

appropriate format from the ‘Compilation’ parameter in the SysGen System Generator 

module’s interface as illustrated in Figure 8. If an HDL Netlist were chosen, as shown in 

the figure, the software would generate an HDL file that could be utilized in a variety of 

development tools. For this thesis, SysGen was used to generate a .bin file so the 

compilation parameter was set to ‘Bitstream’.  

 

 

Figure 8 .  SysGen System Generator Module Interface. 
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The SysGen System Generator module is also used to specify other critical design 

parameters such as FPGA chipset, desired HDL format, clock rate, and more. Once all 

the required values are specified, the desired output file is produced by clicking the 

‘Generate’ button located in the lower left-hand corner of the System Generator module’s 

interface. The specified output file format is then created and stored in the Target 

directory specified within the interface. 

E. SUMMARY 

This chapter highlights the concepts that were relevant to the SDR design process: 

Fourier analysis, FPGAs, the FPGA design flow, and Xilinx’s System Generator 

(SysGen). Of all the topics discussed, the fast Fourier transform (FFT) and SysGen 

software tool are the two most central elements of this design’s overall development 

process.  The next chapter provides a conceptual description of the modules and data 

management strategies used to develop the design. 
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III. CONCEPTUAL DESIGN MODEL 

In order to develop the SDR outlined in the first chapter, a design was built 

around the conceptual model shown in Figure 9.  

 

Figure 9 . SDR Modules. (Conceptual). 

Each module’s basic functionality is outlined below, but more detailed 

descriptions are provided in Sections III.A through III.E: 

• Signal:  A pre-demodulated (pre-D) IF signal is applied to the 

system input 

• FFT: The IF input signal is processed through a fast Fourier transform 

(FFT) so that it can be analyzed in the frequency domain 

• Bin Energy Calculation: The input signal’s frequency domain 

information is associated with the appropriate operator-defined bins. Once 

all the data points for each bin are processed, energy in each bin is 

calculated for use in the Bin Threshold Analysis module. Operators will 

also have the ability to prioritize the relative importance of each individual 

bin. This will be useful in the final Data Management module. 
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Note: FFT signal data are stored in temporary memory for use in later 

stages of the design. 

• Bin Threshold Analysis: First, each bin is analyzed and its energy is 

compared to its established threshold. Then, control data pertaining to bins 

with sufficient energy are generated and passed to the Data Management 

module. 

• Data Management:  Control data are used to manage four interrelated 

processes: 

o Read FFT signal data from temporary memory ; 

o Compress the dataset so it only includes information associated 

with bins that meet threshold requirements; 

o Store the compressed dataset in final output memory;   

o Manage available output memory.  

 

The following sections cover the general strategies used to design the modules 

outlined above. 

A. SIGNAL    

For testing purposes, IF input signals are generated digitally and passed through 

the system. Sinusoids of known frequencies are used as examples throughout this paper. 

B. FFT 

The FFT module is the first interface between the IF input signal and the rest of 

the design. The output of the module consists of both real ( X ) and imaginary (Y ) 

components. For a given output sample, both components share the same FFT index, k , 

which will always fall between the values of zero and one less than the number of points 

per FFT ( N ).  

 0 1k N≤ ≤ −  (III.1) 
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Although the concepts will make more sense after reading the upcoming sections 

on windowing, it is important to know that all FFT data points are associated with both 

time and frequency windows. To manage these relationships, FFT data are stored in 

multiple vectors and the notational descriptions are provided in the relevant sections.  

C. BIN ENERGY CALCULATION   

In order to analyze the bins as depicted in Figure 4, it is necessary to examine the 

IF input in terms of its frequency and time components. First, input signals are passed 

through an - pointN  FFT for analysis in the frequency domain. All FFT data are stored 

in temporary memory for processing in a later stage. Once in the frequency domain, 

signal energy can be calculated with respect to both time and frequency windows.  Figure 

10 shows the conceptual model used to calculate energy values. 

 

Figure 10 .  Bin Energy Calculation Module (Conceptual). 

1. Time Windowing 

A few things should be noted about the relationship between sample 

frequency, sF , and time windowing for this design. First, the sF  of the input signal and 

FFT module are assumed to be equal. This means that the smallest continuous block of 

time, or minimum time-window, that can be analyzed ( minT ) is a function of the FFT 

period, N , and the sample time ( 1/s sT F= ), 
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 min s
s

NT NT
F

= =  (III.2) 

This also means that for this design, an operator-defined time-window period (T ) must 

be an integer ( M ) multiple of minT , 

 min
s

MNT MT
F

= =  (III.3) 

As an example of how this works, if 3µs sT =  and 8N =  then 8 x 3µs =24µs minT = .  

Therefore, all time-windows must be multiples of 24 µs (i.e., T  must be 24, 48, 72, etc.).   

Figure 11 gives a visual example of how the process works using 3M =  to 

determine T . The input signal shown in figure’s the top graph, 

 sin 2 ,  where [0,1,2,..39]
8
n nπ⎛ ⎞ =⎜ ⎟

⎝ ⎠
 (III.4) 

will be used as the reference input throughout this thesis. It has a period of 8 samples, so 

to simplify analysis an 8-point FFT is utilized.  

 

 

Figure 11.  Input Signal Compared to FFT Analysis. 
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This method of time windowing is used to facilitate the design’s energy 

calculation process. The first step involves calculating the energy at each FFT index ( k ). 

The is done by adding the squared FFT values of the real, ( )X k , and imaginary, ( )Y k , 

index components and storing the value in ( )E k , 

 2 2( ) ( ) ( )E k X k Y k= +  (III.5) 

Based on the input signal in Figure 11, the real component of the FFT is zero, so 

it will not be mentioned in later analysis.  Figure 12 shows the general concept covered in 

Eq.  (III.5).   

 

Figure 12.  FFT Data Converted to Energy. 

Each ( )E k  value is stored in memory so that it can be appended to a vector that 

represents the energy values, ( )minE m , in an FFT period,  

 ( ) [ (0), (2) , ... , ( 1)]min m E E E N= −E  (III.6) 
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The index m indicates which FFT period is being processed. These vectors are stored in 

memory so the energy in the operator-defined time window, ( )time wE , can be calculated.  

 
1

( ) ( )
M

time min
m

w m
=

=∑E E  (III.7) 

The index w  indicates which operator-defined time window sequence being processed. 

The notation ( ),time w kE  is used to reference the thk  index within the vector.  Each w  

index is associated with a set of m  indices, ( )wm , and the relationship is a function of 

M , the number of  FFT periods in a time-window  

 ( ) [( 1) 1,  ... , ]w w M wM= − +m  (III.8) 

The notation ( , )w km  is used to reference the thk component of the vector. 

Equaton (III.7) represents a vector-based accumulation of the ( )min mE  values. 

Analysis of the input signal in Eq. (III.4) will be used to illustrate the ( )time wE  

calculation process.   

• Energy during  FFT periods: 

Based on the bottom graph in Figure 12, the energy spectrum for each FFT period 

is equal, so the associated ( )min mE  vectors are also equal. As the data in the 

figure illustrates, (1) (2) (3) [0,16,0,0,0,0,0,16]min min min= = =E E E . 

• ( )time wE  energy calculation: 

In accordance with Eq. (III.6), the values in each ( )min mE  vector are added by 

index. As a result, ( ) ( ) [ ]
3

1

1 0,48,0,0,0,0,0,48time min
m

m
=

= =∑E E .  Figure 13 is 

provided as a visual example of the process.   
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(Energy Calculations) (Vector-Based Accumulation) 

Figure 13.  Time Windowing Process. 

In order to reference the thk component in an ( )timeE w  vector, the notation ( , )timeE w k  will 

be used. The vector will always have N  total indices starting at zero (analogous to FFT 

indices).   

Referring back to the overview in Section III.B, FFT data values from a specific 

FFT  period are stored in ( )min mX  and ( )min mY  vectors, 

 ( ) [ (1) , (2) , ... , ( )] min m X X X N=X  (III.9) 
 
 ( ) [ (1) , (2) , ... , Y( )] min m Y Y N=Y  (III.10) 

In order to reference the thk  component in either vector, the notation ( , )m kX  and 

( , )m kY  will be used.  These vectors are then used to generate vectors 

( )time wX and ( )time wY , which represent time-windows 

 ( )( ) ( )( ) ( )( ) -1 1 , 1 M+2 , ... , time min min minw w M w wM⎡ ⎤= + −⎣ ⎦X X X X  (III.11) 
 
 ( )( ) ( )( ) ( )( ) -1 1 , 1 M+2 , ... , time min min minw w M w wM⎡ ⎤= + −⎣ ⎦Y Y Y Y  (III.12) 

In order to reference the thq  component in either vector, the notation ( ),time m qX  and 

( ),time m qY  will be used where 

 1 q NM≤ ≤ . (III.13) 
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2. Frequency Windowing 

Once the energy for a time window is calculated, it is possible to determine the 

energy in frequency ranges of interest, which equate to energy in bins ( binE ).  The 8-point 

FFT analysis above will be used to illustrate the process of frequency-based calculations. 

Recall from Section II.A that an 8-point FFT length dictates that 4k =  is the maximum 

digital frequency that can be detected unambiguously. Likewise, if the digital frequency 

of interest is 1k = , then values captured in indices 1 and 7 provide relevant information.  

Since the SDR’s IF input signal is a real signal, the FFT is conjugate symmetric so the 

FFT values for 1 / 2 5k N≥ + =  are redundant and can be disregarded.  As a result, FFT 

indices between zero and half the FFT period, / 2N , are used to manage energy 

calculations.  

First the operator defines the digital start and stop frequencies for each range of 

interest ( ROI ) and the values are stored in the vector, ( )bROI . Next, the FFT indices 

associated with a ROI  are stored in a vector, ( )bL . The notation ( ),b lL  is used for the 

thl  component in the vector. The variable l  represents an index in the ( )bL  vector, 

which can range from one to the total number of indices associated with the bin, maxl . 

Finally, the values in ( )time wE  that coincide with the indices in ( )bL  are added by index. 

The resulting sum is equal to the total energy within a frequency range and equates to the 

energy in the bin,  ( ),binE w b  

   
max

1
( , ) ( , ( , ))

l

bin time
l

E w b w b l
=

=∑E L    (III.14) 

Unlike Eq. (III.7) which is vector addition Eq. (III.14) is defined as the sum of the 

components within a single ( )timeE w  vector, which results in a scalar. For example, 

assume an operator is interested in two digital frequency ranges such that 

( ) [ ]1: 2=ROI 1  and ( ) [ ]2 3=ROI . Since the IF input signals are real signals, the 

resulting FFT data is conjugate-symmetric. As a result, when working with an 8-point 
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FFT ( ) [ ]1 1,2=L and ( ) [ ]2 3=L . Based on the ( )1timeE  vector calculated in Section 

III.C.1, 
2

1

(1,1) (1, (1, ))bin time
l

E l
=

= =∑E L 48 0 48+ =  and ( ) ( )( )
1

1,2 1, 2, 0bin time
l

E l
=

= =∑E L . 

D. BIN THRESHOLD ANALYSIS 

Once the bin set has been fully processed, energy values for each bin are 

compared to their operator-defined thresholds, ( )H b .  If any of the bins meet or exceed 

their threshold, then the time window index, w , and other relevant control data are 

stored. A complete list of control data are provided in Table 1. Once all the bins have 

been evaluated, an analysis flag is generated to indicate that a bin set’s data are ready for 

compression and storage in the Data Management Module. 

  

Table 1.  Control Signal: Threshold Analysis. 

Control Data Purpose 

_anal fl   Flag indicates that a bin set has been processed and the dataset is ready for 

compression 

anal_qty(w)  Vector containing the number of bins that meet or exceed their threshold 

( )wanal_ROI  Vector containing the ROIs that meet or exceeds their threshold 

 

To better understand how the Threshold Analysis Module works, the ( ),binE w b  

example from the previous section is continued. Assume the bin thresholds are 

( )1 43H =  and ( )2 50H = :  

• Bin energy comparisons 

In the previous example, the energy for the first bin was calculated such that 

( )1,1 48binE =  and the energy in the second bin was calculated such that 

( )1,2 0binE = . Based on the calculated energies and thresholds for each bin 

( ) ( )1,1 1binE H<  and ( ) ( )1,2 2binE H<  
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• Generated control data  

Since only the first bin met threshold requirements when all bin set data has 

been processed and is ready for compression, which is indicated by the 

_anal fl  control signal, data will only be stored for the first bin. Since this 

example involves the first bin set the associated index is set to one, 1w = . The 

number of passing bins for the bin set is captured with the ( )anal_qty w  

vector, so ( )1 1anal_qty = . In similar fashion, the passing bin(s) are captured 

in the ( )wanal_ROI  vector, so ( )1 1=anal_ROI . 

E. DATA MANAGEMENT 

When the _anal fl  flag is set to indicate that the dataset is ready for 

compression, the data management module generates a signal to control the process for 

reading FFT signal data out of temporary memory.  There are 2N  data points per FFT 

period ( N real and N imaginary). However, as described in Section III.C.2, the SDR is 

designed to work with IF signals, which are real in the time domain and conjugate-

symmetric in the frequency domain. This symmetry allows the design to disregard the 

redundant data so that only ( )2 / 2 1N +⎡ ⎤⎣ ⎦  data points per FFT period are utilized, 

( )/ 2 1N +  values being real and the other ( )/ 2 1N +  are imaginary. Since there are a 

total of M  FFT periods per time-window a total of ( )2 / 2 1M N +⎡ ⎤⎣ ⎦  data points could 

potentially be written to output memory. As a visual reminder of what this means, refer to 

Figure 11 and observe the FFT points associated with the three minT  periods that comprise 

the first time-window.  

The primary goal of this design is to reduce the number of data points stored in 

output memory. So, instead of storing ( )2 / 2 1M N +⎡ ⎤⎣ ⎦  data points every T  seconds, this 

module will only store values associated with indices in ROIs  that meet defined 

thresholds. The bin index, b , for each passing ROI  is stored in the ( )wanal_ROI  

vector. To simplify the explanation, the general concept will only be described with 
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respect to the imaginary data points stored in the vector associated with the time-window 

period, ( )time wY . As described above, each range has an L  vector that contains its 

relevant FFT indices. The vectors for each ROI  in ( )wanal_ROI are used to determine 

the imaginary values that will be stored in the final compressed dataset. This process is 

broken into two principle steps. First, compile all FFT values associated with qualifying 

bins into binY vectors,    

 

( ) [ ]( )
( )( ) ( )( )

( )( ) ( )

, 1,  ... , ,  ( 1),  ... ,  2 , ... , , ... , 

               , ,1 ,  ... , , , ,  ...

                ... , ,1 ,  ... , , , ,  ... ,

bin bin max max max max max

time time max

time time max

w b l l l (M -1)l Ml

w b w b l

w N b w N b l

= +

=

+ +⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦

Y Y

Y L Y L

Y L Y L

( ) ( )( ) ( ) ( )( )
 ...

                ... , 1 ,1 ,  ... , , 1 ,time time maxw M N b w M N b l− + − +⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦Y L Y L

(III.15) 

For ROIs  not included in ( )wanal_ROI , null vectors are assumed. The second step 

involves combining all ( ),bin w bY  vectors to produce the final imaginary output vector, 

( )out wY , for the bin set, 

 ( ) [ ( ,1), ( , 2),..., ( , )]out bin bin binw w w w s=Y Y Y Y  (III.16) 

The variable s  indicates the total number of bins that are evaluated in a bin set. The exact 

same process applies to the real component of the signal data, but the resulting vectors 

are designated ( ),bin w bX  and ( )out wX . 

 

( ) [ ]( )
( )( ) ( )( )

( )( ) ( )

, 1,  ... , ,  ( 1),  ... ,  2 , ... , , ... , 

               , ,1 ,  ... , , , ,  ...

                ... , ,1 ,  ... , , , ,  ... ,

bin bin max max max max max

time time max

time time max

w b l l l (M -1)l Ml

w b w b l

w N b w N b l

= +

=

+ +⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦

X X

X L Y L

X L Y L

( ) ( )( ) ( ) ( )( )
 ...

                ... , 1 ,1 ,  ... , , 1 ,time time maxw M N b w M N b l− + − +⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦X L Y L

(III.17) 

 
 ( ) [ ( ,1), ( , 2),..., ( , )]out bin bin binw w w w s=X X X X  (III.18) 

A brief example of how ( )out wY  is generated will be explained below based on 

the input signal and analysis data generated to this point:  
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• Imaginary FFT values: 

Based on the example in Section III.C.1 and Figure 13 the imaginary values 

for the first three FFT periods, ( )min mY , are all equal. Therefore 

( ) ( ) ( ) [ ]1 2 3 0,4,0,0,0,0,0,4min min min= = =Y Y Y . 

• Bin definition and data compression : 

Based on the example in Section III.C.2, the first bin was defined such that it 

includes the 2nd and 3rd indices of each FFT, which means  ( ) [ ]1 1,2=L . 

Therefore, in accordance with Eq. (III.15), the vector that contains the 

compressed data set for the first bin, ( )1,1binY , must contain the 2nd and 3rd 

values from each of the ( )min mY  vectors ( ) [ ]1,1 4,0,4,0,4,0bin =Y  

• Final Output 

Since the first bin is the only one to meet its threshold requirement, it is also 

the only bin represented in the final output data set, ( )1outY . As a result 

( ) ( ) [ ]1 1,1 4,0,4,0,4,0out bin= =Y Y .   

An important point to take from this example is that instead of 24 imaginary FFT values 

for a time-window period of T  seconds, only 6 values will be stored in memory.  

Therefore compression is achieved. 

Without additional data, ( )out wX  and ( )out wY  do not provide enough information 

for an operator to analyze the system’s output data. To remove all ambiguity, the Data 

Management Module generates header data that is stored in the ( )whdr  vector. 

 ( ) [  , ( ) , _ ( ) ,  ( )]w w anal_qty w pri fl w w=hdr anal_ROI  (III.19) 

The ( )pri_fl w  signal is described in more detail in Section IV.B.3.f, but in 

general terms it indicates the design’s operating mode during a bin set’s analysis period. 
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The vector ( )whdr  is prepended to the two data vectors ( )out wX  and ( )out wY  to create a 

more relevant output vector, ( )wOut , which is then stored in final output memory. 

   ( ) [ ( ) , ( ) , ( )]out outw w w w=Out hdr X Y    (III.20) 

If available output memory were to become an issue, the process for compressing 

signal data can be altered to reduce expected storage requirements. This is accomplished 

by limiting the maximum number of bins per bin set that can be stored in final output 

memory. Instead of saving data for all s  operator-defined bins, the operator provides a 

secondary constant ( pris ) to indicate the alternate maximum number of bins that can be 

stored.  The system will be aware of this situation because onboard memory provides a 

signal that is used to generate the ( )pri_fl w  flag  once it reaches a specified capacity. In 

order to alleviate the problem, the design essentially disregards the lowest priority ranges 

of interest, even if they meet established requirements. In practice, that means a bin set’s 

final output vector will only include the highest priority signal data. However, the output 

header will still indicate that other ROIs  met or exceeded their thresholds.  

Below, is a more detailed example of how ( )wOut is generated. Assume the bin 

set has been fully processed and the resulting analysis data is as follows:  

• The SDR processed the 7th  time-window  7w =  

• Calculated bin energies: ( ) ( ) ( )1 15; 2 50; 3 46bin bin binE E E= = =  

• Operator defined bin thresholds: ( ) ( ) ( )1 10; 2 45; 3 40H H H= = =  

• Bin set data (Real):  

( ) [ ]7,1 0,1bin =X , ( ) [ ]7,2 2,3,4,5bin =X , and ( ) [ ]7,3 6,7,8bin =X  

• Bin set data (Imaginary): 

( ) [ ]7,1 1,2bin =Y , ( ) [ ]7,2 3,4,5,6bin =Y , and ( ) [ ]7,3 7,8,9bin =Y  

• Memory shortage indicator is set  ( )7 1pri_fl =   
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• In a memory shortage condition, the number of bins to store per bin set is 

set to 1  1pris =  

Recall: 

( ) ( ) ( ) ( ), , _w w anal_qty w , pri_fl w w= ⎡ ⎤⎣ ⎦hdr anal ROI

( ) ( ) ( ) ( ), ,out outw w w w= ⎡ ⎤⎣ ⎦Out hdr X Y  

Based on the bin set data:  

(1) (1)binE H> ;  (2) (2)binE H> ;  and (3) (3)binE H> , which means that all 

three bins meet their threshold requirements. In normal operating mode, 

this would result in data from all three bins being stored in output 

memory. However, since there is a memory shortage, indicated by 

( )7 1pri_fl = ,  and since the number of bins to store in a memory 

deprived situation is only one, indicated by 1pris = , then only data from 

the first bin are stored in final output memory.  

As a result: 

• Since three bins meet threshold requirements ( )_ 7 3anal qty = ; 

• Generated header information: 

( ) ( ) ( ) ( )
[ ]

7 7, 7 , _ 7 , _

           7,3,1,1,2,3

anal_qty pri fl= ⎡ ⎤⎣ ⎦
=

hdr anal ROI 7
 

• Compressed FFT data output: 

 (7) [1, 2]out =X  and (7) [0, 1]out =Y ;  

• Therefore the final output is 

 

[ ]
[ ]

(7) (7) , (7) , (7)

= 7, 3, 1, 1, 2, 3, 1, 2 , 0, 1
out out=Out hdr X Y

. 
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F. SUMMARY 

This chapter provides a conceptual description of the primary design modules and 

data management strategies used to develop the SDR design.  The FFT module processes 

the input IF signal so that it can be analyzed in the frequency domain.  The Bin Energy 

Calculation module then associates the frequency domain data with the appropriate 

operator-defined bins. Once the data points for each bin are processed, the energy in each 

bin is calculated. The bin energies are processed by the Bin Threshold Analysis module, 

which passes analysis data onto the final Data Management module. The final module 

controls the process for reading FFT signal data from temporary memory, compresses the 

dataset, and stores the compressed dataset in final output memory.  The next chapter 

focuses on the implementation of the conceptual model in the SysGen development 

environment. Detailed descriptions of each design element are provided in context with 

its parent module and any interrelated components.  
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IV. DESIGN IMPLEMENTATION DETAILS 

Chapter III provided an overview of the SDR’s conceptual design elements and 

the functional groupings of its signals and data values. This chapter focuses on the design 

implementation that was created using the SysGen software environment. Based on the 

resources available, the SDR was designed for a Virtex-4 FPGA architecture. Since 

hardware resources vary depending on the FPGA architecture, the use of a Virtex-4 

affects the design’s portability. However, a majority of the components used in the design 

are portable between Virtex-1 and Virtex-5 architectures.  Figure 14 illustrates the high-

level modules that constitute the full design. The modular descriptions provided in this 

chapter assume the reader has a basic familiarity with MathWorks’ MATLAB and 

Simulink development tools.  

  

Figure 14.  SysGen SDR Module. 

Starting on the left side of the design, there a two SysGen Gateway In modules, 

realIF  and startIF . These inputs are used to route sampled signal data from an external 

source into the design, directly to the FFT module. Since IF signals are always real, the 

FFT modules imaginary input is connected to a constant zero. As described in the last 
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chapter, FFT data are used to calculate energy in the Bin Energy Calculation module and 

they are also stored in the Temporary FFT Data Storage module for later compression. 

Bin energy calculations are then routed to the Bin Analysis module for comparison to 

established thresholds. Finally, analysis data are routed to the Data Formatting module. 

The analysis data are then used to manage the compression of FFT data that is stored in 

the Temporary FFT Data Storage module. The SysGen Gateway In module finalrE  is used 

to control when the compressed data are read out of the design and sent out via the 

SysGen Gateway Out module Out .  

As design elements are described in this chapter, three different types of elements 

will be discussed: SysGen IP cores (modules); Control algorithms, which are defined 

using MATLAB code and implemented via SysGen M-code modules; and control 

modules, which are interconnected compilations of the two. 

A. FAST FOURIER TRANSFORM (FFT)  

1. SysGen FFT v4.1 Module 

The FFT in this design is implemented using the SysGen FFT v4_1 module 

shown in Figure 16.  The input signals, realIF and the constant zero are first passed 

through SysGen Delay modules. The 4z−  displayed in each of the modules indicates that 

the input signals are delayed by four clock cycles before being applied to the FFT 

module’s inputs, _xn re  and _xn im . 

 _ [ ] [ 4] , 4realxn re n IF n n= − ≥  (IV.1) 
 
 _ [ ] 0xn imag n =  (IV.2) 

As described in Eq. (II.3), the variable n  represents the time index. The delay is included 

to compensate for the module’s implementation which injects a four clock delay 

 between the output index ( xn_index ) and the associated output data ( xk_re and xk_imag ). 

Figure 15 illustrates the timing relationship between each of the module’s IO signals. 
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Figure 15.  SysGen FFT v4.1 Module Timing Diagram. 
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As defined in Eq. (II.4), FFT data values are scaled by the number of points in the FFT, 

N . Although the SysGen FFT module is designed to enable the scaling process, the 

documented process was not clear during the design’s development.  To work around the 

issue the module was used without internal scaling, i.e., the scaling feature of the SysGen 

FFT module itself was disabled.  The FFT module's output therefore was  

 
1

(2 / )

0
[ ] [ ]

N
j N kn

n
G k g n e π

−
−

=

= ∑  (IV.3) 

This implementation differs from the definition in Eq. (II.4) by a scaling factor of 1/ N . 

Although in certain applications this could be a trivial matter, it could potentially lead to 

memory overflows in this design. As a result, the SysGen Scale modules illustrated in 

Figure 16 were utilized to translate the SysGen FFT module’s output data to match the 

definition in Eq.(II.4). All resulting data points are stored in RAM for compression in a 

later stage of the design. The addressing scheme for this data will be covered in Section 

IV.D.3 

  

Figure 16.  SysGen FFT Module (N = 8). 

 
 

The module’s relevant I/O signals are listed in Table 2 and Table 3. These signals 

are specific to the SysGen FFT module, but they interface directly with the signals 

defined in the previous chapter.  



 39

 

 

 

Table 2.  Input Signals: SysGen FFT Module v4.1. 

Signal Functional Purpose / Description 

xn_re  

The real component of the input data stream. The driving signal can be 

a signed data type of width D  with binary point at 1D − , where D  is a 

value between 8 and 24, inclusive (e.g.: Fix_8_7, Fix_24_23).  

( )Fix_D_ D -1  indicates a D  bit fixed-point numerical word with 

1D −  bits following the decimal point. 

xn_im  
The imaginary component of the input data stream. Same format as 

_xn re , however for this design the applied input is always zero. 

start  Set to indicate xn_re and xn_im  inputs are valid. 

fwd_inv  

Dictates whether the module processes input data as an FFT (forward) 

or as an IFFT (inverse). 

[0] = forward transform.  

[1] = inverse transform. 

The driving signal must be a Boolean type. 
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Table 3.  Output Signals: SysGen FFT Module v4.1. 

Signal Functional Purpose / Description 

xk_re  The real component of the output data stream. 

xk_im  The imaginary component of the output data stream.  

xn_index  Indicates the index of the input data that are being processed.  

xk_index  

Indicates the index of the output data.  

 

Note:  There is a four clock delay between the output index and the 

associated output data; refer to timing diagram in Figure 15. 

vout  
A Boolean signal which indicates whether output data are valid or 

invalid.  

edone  
A Boolean signal that is active high one sample period before the block 

is ready to produce the processed data frame.  

 
 

2.  SysGen FFT v4.1 Module Constraints  

As outlined in Table 2, the FFT module requires input data ( xn_re  and xn_im ) to 

be formatted as a fixed point signed value in the form of ( )Fix_D_ D -1 . Therefore, if 

D =8 then the input data format would be Fix_8_7 . This formatting requirement dictates 

that signal input values applied to the FFT module must have magnitude less than one. 

This situation could place a major restriction on the magnitude of signals that are 

processed by the design. To compensate for the limitations, the realIF  input signal must be 

normalized by a constant ( c ). The actual SDR application will dictate the appropriate 

value for the constant, but for testing purposes c is set to 4.  
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 _ /realxn re IF c=  (IV.4) 
 _ 0xn imag =  (IV.5) 

The normalization defined in Eq. (IV.4) is accounted for in the Bin Threshold Analysis 

stage of the design.  

Another potentially significant constraint of the SysGen FFT v4.1 module is that 

it is the only component in the SDR design that is not compatible with Virtex-1 hardware 

resources. It is portable to all other Virtex architectures, up to the Virtex-5. If this design 

were to be realized on a Virtex-1, this IP core would need to be replaced. 

B. BIN ENERGY CALCULATION 

As outlined in Chapter III.C, bin energy calculations require three basic steps:  

Calculate energy in each FFT index, use those values to calculate the energy in the time 

window, and then use the time window values to calculate the energy for each frequency 

window. As shown in Figure 17, signal data are routed from the FFT module to the 

windowing module, which consists of three energy calculation components. The Energy 

(FFT Index) module is responsible for calculating the energy in each FFT index, ( )E k . 

These values are then passed on to the Energy (Time Window) module, which calculates 

energy spectrum for the time-window, ( )time wE . That vector is then routed to the Energy 

(Frequency Window) module, which is responsible for determining the energy in each 

bin, ( , )binE b w . 
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Figure 17.  Control Module: Bin Energy Calculation. 

1. Control Module: Energy (FFT Index) 

As described by Eq. (III.5), the process for calculating energy at an FFT index 

involves adding the squared values of the real and imaginary components. This is 

implemented using two multipliers and an adder, as shown in Figure 18. 

 

Figure 18.  Control Module: Energy (FFT Index). 
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2. Control Module:  Energy (Time Window) 

In order to calculate the energy in a user defined time window, it is first necessary 

to track and store energy values associated with an FFT period, ( )min mE , as described in 

Eq. (III.6).  Then, on an FFT-index-based level, add the values for each vector associated 

with a time window. This is accomplished by working with first-in-first-out (FIFO) 

memory, an accumulator, multiplexers, and the pwr_time  control algorithm that 

manages each element. The implementation can be viewed in Figure 19. 

 

Figure 19.  Control Module:  Energy (Time Window). 

As described in Chapter III.C, a key element to energy calculation in this design is 

knowing which data points associate with a time window vector ( )time wE  and each of its 

( )min mE  vectors. To manage this information and the time windowing process, the 

pwr_time  control algorithm was scripted using MATLAB code. The module utilizes the 

output ready flag, edone , and the discrete frequency signal, xk_index , signals from the 

SysGen FFT module to track data indices and control elements of the larger module. As 

described in, the edone  signal indicates that data for a new FFT period will be generated 

on the next clock and xk_index indicates the FFT index, k . 
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The time windowing process involves storing the energy values of a bin set’s first 

( )min mE  vector into FIFO memory.  Then as ( 1)min m +E  values become available, they 

are added, by index, to the values stored in memory and the sums are stored in memory. 

In theory, this process would repeat for each FFT period in a time- window, which would 

be M  times.  However, in practice the pwr_time  control algorithm only repeats the 

process M - 1 times and makes a slight revision on the last pass. The final vector, 

( 1)min m M+ −E  is added to the data in memory and the result is ( )time wE . Instead of 

sending the final vector data to memory, it is routed to the next stage of the design. 

During this final stage, the control algorithm also generates signals to indicate when the 

energy values for a time-window start ( _time st ) and when they stop ( _time end ) being 

produced. 

The pwr_time  control algorithm generates several other control signals to 

manage all the components in the Energy (Time Window) control module. A complete 

list is provided in Table 4. 

Table 4.  Output Signals (pwr_time). 

Signal Functional Purpose / Description 

_time wE  Control when data are written to memory. 
_time rE  Control when data are read from memory. 

_add mux  
Control signal for MUX_Adder. 
 
Dictates which form of the data input stream is sent to the accumulation 
circuit.  

_mem mux  

Control signal for MUX_Memory. 
 
Dictates whether data written to memory is directly from ( )indE i  or the 
Accumulator. 

_time st  Indicates the first output data point associated with a time-window. 
_time end  Indicates the last output data point associated with a time-window. 
_time val  Control signal for MUX_Output. 
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3. Control Module:  Energy (Frequency Window) 

As described in Chapter III.C.2, the process for calculating energy in a frequency 

window involves index-based analysis of the values in ( )time wE , as illustrated in (III.14). 

To carry out this analysis, the vector data are first stored in random access memory. To 

manage how this information is stored, the Write Enable (Time Window) module was 

designed to control the input addressing scheme. Next, the stored energy values are read 

out of memory and summed in accordance with the bin indices stored in each of the ( )bL  

vectors. The resulting values represent the energy in each bin, ( , )binE w b .  Two distinct 

control mechanisms were designed to facilitate this process. The first, Read Enable 

(Frequency Window), facilitates the process of reading data from memory. The second 

control module, Accumulator Control, is used to manage the accumulators that 

calculate ( , )binE w b . The entire frequency windowing module can be seen in Figure 20, 

and more specific details are provided in the following sections. 

 

Figure 20.  Control Module: Energy (Frequency Window). 
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a. SysGen Dual Port RAM Module 

The SysGen Dual Port RAM module displayed in Figure 21 is used to 

store the time-window energy values, ( )time wE .  

 

Figure 21.  SysGen Dual Port RAM Module. 

The benefit of the module is that it enables simultaneous access to two 

separate memory spaces, at different sample rates. This allows data to be written or read 

from one address ( A ), while data are read or written to a separate location ( B ). These 

functions are managed with control signals listed in Table 5. 

 

Table 5.  IO Signals: Dual Port RAM. 

Signal Functional Purpose / Description 

_addr a  Controls the address for memory location A. 

_din a  Data to be written to memory location A. 

_wE a  Write enable control for memory location A. 

_addr b  Controls the address for memory location B. 

_din b  Data to be written to memory location B. 

_wE b  Write enable control for memory location B. 

A  Output for memory location A (1 clock delay). 

B  Output for memory location B (1 clock delay). 
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b. Control Module: Write Enable (Time Window) 

All ( )time wE  data values are temporarily stored in RAM, so a fixed 

addressing scheme is required. For this SDR design, storage addresses are determined 

based on the time-window sequencing number, w , and each data value’s FFT index, k . 

The two parameters are used to generate an address ( _addr wE ), which is composed of 

two binary words. The most significant word ( 1_addr wE ) is a function of w  and the 

least significant word ( 2_addr wE ) is a function of k . 

 1_ 1addr wE w= −  (IV.6) 
 2_addr wE k=  (IV.7) 
 1 2_ [ _ , _ ]addr wE addr wE addr wE=  (IV.8) 
 

c. Control Algorithm: wE_time_win 

The wE_time_win  control algorithm was designed, using MATLAB code, 

to implement the addressing scheme described in Equation (IV.8). When the algorithm 

receives the control signal that indicates the start a new ( )time wE  vector, _time st , it 

generates a write enable signal ( _time wE ) to control the RAM's input storage 

mechanism. The algorithm works with control signals N  and R  to manage the 

addressing scheme. As a reminder, N  is a constant that indicates the number of samples 

per FFT period. The variable R  is a constant that indicates the maximum number of bin 

sets that can be stored in memory before the bin index, b , starts over at zero.  The 

algorithm is designed to produce the two address components starting with 

1_ 0addr wE =  and 2_ 0addr wE = . At each clock cycle, the module increments 

2_addr wE   until it equals 1N − . For that entire period, _time wE , remains active high 

so that storage RAM is able to store generated data. At the end of the period, the 

algorithm sets _time wE  to zero, it sets _time fl  equal to one, and then awaits the next 

_time st  flag. The _time fl  flag indicates that the last ( )time wE  data value has been 

saved into memory. When _time st  is reset to one, the algorithm updates the address 
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variables so that 1_ 1addr wE = , 2_ 0addr wE = , and the steps above repeat. This 

process is repeated until 1_addr wE  is equal to the number of bin sets that can be stored 

in memory, R , and then the address resets to the initial state where 1_ 0addr wE = and 

2_ 0addr wE = . 

The final element of the addressing scheme requires a SysGen 

concatenation module. This block concatenates 1_addr wE  with 2_addr wE  to generate 

the actual address _addr wE . The full implementation can be seen in Figure 22. 

 

Figure 22.  Control Module: Write Enable (Time Window). 

d. Control Module: Read Enable (Frequency Window) 

Once all the ( )time wE  data are stored in memory, a control mechanism is 

required for reading out the values associated with operator-defined ranges. As shown in 

Figure 23, this design utilizes two RAM modules for ROI  Control memory elements, the 

_ _rE freq win  control algorithm, the ROI  Quantity control module, and a 

concatenation block to manage the process. 
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Figure 23.  Control Module:  Read Enable (Frequency Window). 

In this design, ROI  Control memory consists of two SysGen Single Port 

read-only-memory (RAM) modules, as illustrated in Figure 23. Single Port RAM (Low 

Freq Wind), contains the starting indices for all the ROIs , while Single Port RAM (High 

Freq Wind) contains the final indices for each.  The most important point about the 

memory elements is the way in which range information is stored. The memory address 

( _addr ROI ) for each ROI  is a function of its associated bin, b , and is the same for 

both RAM modules, 

 _ ( ) 1addr ROI b b= −  (IV.9) 

This means, for example, that the starting index for the 3rd ROI  is stored in Single Port 

RAM (Low Freq Wind) at ( )_ 3addr ROI  = 2 and the final index for the ROI  is stored in 

Single Port RAM (High Freq Wind) at the same address. 

e. Control Module: ROI Quantity Control 

The ROI Quantity control module performs two simple functions. First, it 

is responsible for establishing the design’s operational mode during a bin set’s analysis 

period. As mentioned in Section III.E, the design relies upon the ( )pri_fl w  control 

signal to determine the appropriate mode. As described in the next section, the signal’s 

status determines the number of bins analyzed during each bin set, _bin qty . As 

illustrated in Figure 24, this is accomplished using the mem_pri  control algorithm, a 
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MUX, and the operator-defined constants, s  and alts . The variable s  indicates the 

default number of bins analyzed when the system’s output memory capacity is below its 

threshold, U . During periods when this is not the case, alts  indicates the alternate 

number of bins to be processed.  

  

Figure 24.  Control Module: ROI Quantity Control. 

f. Control Algorithm: mem_pri 

The mem_pri  control algorithm’s sole purpose is to set the ( )pri_fl w  

flag which indicates the status of the design’s operating mode during each bin set’s 

analysis period. The ( )pri_fl w  flag is a function of the flag that indicates whether final 

output memory has exceeded the operator-defined threshold capacity,  _mem fl .  If the 

_mem fl  is zero when the bin set’s analysis period begins, indicated when _time fl  is 

set to one,  then _pri fl  is reset to zero until the next _time fl  pulse is received. 

However, if _mem fl  is one when _time fl  is pulsed active-high, then _pri fl  is set to 

one until the next _time fl  pulse is received. 

g. Control Algorithm: rE_freq_win 

One of the most important functions of the Read Enable (Frequency 

Window) control module is to generate signals that facilitate management of each bin’s 

frequency windowing process.  The _ _rE freq win  control algorithm was designed 

using MATLAB code to orchestrate the process. When the algorithm receives the  

_time end  flag, which indicates that the last energy value of a time-window has been 
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calculated, it sets two control signals: (1) The _rng st  signal is pulsed active-high to 

indicate that the first address of a bins stored time-window data, ( )time wE , has been 

generated, and (2) the signal ( )_addr ROI b  signal is set as described in Eq. (IV.9). The 

second signal is used to control the output of the ROI  Control memory, which provides 

start ( _rng lo ) and stop ( _rng hi ) indices for each ROI . The algorithm also 

sequentially generates the address values ( _addr rE ) for memory locations associated 

with each ROI . Since this process is affected by the addressing used in the 

wE_time_win  control algorithm, the rE_freq_win  algorithm utilizes a similar two word 

addressing algorithm where the most significant word ( 1_addr rE ) is a function of w .  

 1_ ( ) 1addr rE w w= −  (IV.10) 

The difference in the _ _rE freq win  algorithm is that the least significant word 

( 2_addr rE ) does not necessarily start at zero and end at N -1. Instead, the set of indices 

for each ROI  ( 2addr_rE ) begins with the relevant _rng lo  value and ends with the 

appropriate _rng hi  value. 

 2 ( ) [ _ ( ),  _ ( ) 1,  ... ,  _ ( )]b rng lo b rng lo b rng hi b= +addr_rE  (IV.11) 

The algorithm generates each element of 2addr_rE  sequentially. The individual values 

represent the second word of the address, 2_addr rE . 

 1 2_ ( , ) [ _ , _ ]addr rE w b addr rE addr rE=  (IV.12) 

When the last address of the initial bin is generated, the _ _rE freq win  

control algorithm again generates two control signals. However instead of _rng st , 

_rng end  is pulsed active high to indicate that the last address for the bin has been 

generated; _addr ROI  is then set to one in order to force ROI  Control memory to 

provide _rng lo  and _rng hi  indices for the next ROI . At the next clock pulse, _rng st  

is once again pulsed active-high to indicate the beginning of addresses for a new bin. As 

described in Section IV.B.3.e, the process for computing _ ( )addr set b  for the second 

range is the same as described above and the procedure is repeated for the number of bins  
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designated by the operating mode, _bin qty . When the final address for a bin set is 

generated, the _ _re freq win  control algorithm pulses the _bin fl  control signal active-

high as an indicator. 

Three additional points should be highlighted about the algorithm. First, 

since ROI  Control memory can be preconfigured to hold several unused ROIs , it is 

important to set the appropriate default number of bins to be analyzed per bin set, s . It is 

also critical to ensure all ROI  data are stored in priority order. Finally, the number of 

bins analyzed in a bin set, _bin qty , is not  necessarily the same during all stages of the 

design’s operation. If the flag that controls the design’s operating mode, ( )pri_fl w , is set 

to zero then  _bin qty  is equals the default value, s . Otherwise _bin qty  is equal to the 

alternate number of bins per bin set, pris .  

h. Control Module: Accumulator Control (Frequency Window) 

As the time-window energy spectrum data, ( )time wE , are read out of 

memory, it is necessary to manage how values in each ROI  are summed together. The 

process is facilitated using the _accum ctrl  control algorithm, two accumulators, and a 

multiplexer, as shown in Figure 25. 

 

Figure 25.  Control Module: Accumulator Control. 
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i. Control Algorithm: accum_ctrl 

The _accum ctrl  control algorithm was designed using M-code to manage 

the accumulators and MUX that are used to calculate the total energy in each bin, 

( , )binE w b . When the algorithm receives the flag which indicates the first address of a 

ROI  has been generated, _rng st , it enables one of the two accumulators by setting 

_1en  or _ 2en  equal to 1. For this description, assume Accumulator_1  is chosen to 

start, so _1en  is set active-high.  This choice also dictates that the output MUX control 

signal, _accum sel , is set to zero so that the final ( , )binE w b  value comes from the 

appropriate accumulator. The _accum ctrl  algorithm continues to assert _1en  until it 

receives the flag which indicates that the last address of the ROI  has been generated, 

_rng end . During that interval, Accumulator_1  sequentially adds ( )time wE  values and 

calculates the total energy, as described in Eq. (III.7). When the 'ROI s  energy 

calculation is complete, the module pulses the _binE val  signal active-high as an 

indicator. There is a one-cycle delay before calculated sums are available at the 

accumulator's output, and this impacts when the device can be reset and when the MUX 

control signal can be updated. Therefore, two clock cycles after receiving _rng end , the 

_accum sel  signal is changed from zero to one and the signal that resets the accumulator, 

_1rst , is pulsed high. Despite these inherent delays, if a new _rng st  signal were 

received one clock after a _rng end signal, the control algorithm is designed to enable 

2Accumulator_  for immediate processing of the next ROI . The major point is that the  

_accum ctrl  algorithm is designed to switch accumulators for each new ROI .  

C. BIN THRESHOLD ANALYSIS 

Data generated in the Bin Energy Calculation control module provides 

information about the energy in each operator-defined range of interest. The Bin 

Threshold Analysis control module is designed to analyze this information and store 

relevant parameters for additional processing. The major components of the module, as 
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illustrated in Figure 26 are a RAM module to store each bins threshold value ( H ), a 

comparator module, delay elements, and the bin_analysis control algorithm.   

  

Figure 26.  Control Module:  Bin Threshold Analysis. 

The initial function of the module is to compare all calculated bin energy values, 

( , )binE w b , to their operator-defined thresholds, ( )H b . To do this, threshold values are 

stored in memory locations, ( )_addr thresh b ,  that correspond with their associated bin 

index, b . 

 _ ( ) 1addr thresh b b= −  (IV.13) 

As the ( , )binE w b  data values are generated, the ROI  memory address signal introduced 

in Section IV.B.3.d, _ ( )addr ROI b , is used to generate the appropriate ( )_addr thresh b  

values. This enables the design to send energy and threshold values to the comparator for 

analysis.   If a bin energy meets or exceeds its threshold, ( )H b , the comparator sets the 

pass  signal active-high for one clock. Based on the results, the Bin Threshold Analysis 

control module generates analysis data that will be described in the following sections. 

The _bin analysis  control algorithm is designed using MATLAB code to capture 

three basic parameters about each bin: the total number of bins that meet threshold 

requirements, _anal qty ; the associated bins, b ; and the time-window sequence value, 

w . The algorithm is built around three control signals: pass , which is generated by the 
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comparator; _binE val , which indicates that a bin's energy has been calculated; and 

_bin fl  from the _ _re freq win  algorithm, which indicates that the last address for a bin 

set has been generated. 

The algorithm essentially idles until the _binE val  signal is set to one. The design 

then utilizes sequential pass  signals to calculate the number of bins in the bin set  that 

meet threshold specifications, ( _anal qty ). The _anal qty  value is incremented every 

time the pass  signal is asserted until the _bin fl  signal is received, which indicates that 

the last bin energy calculation has been completed. Upon receipt of this flag, if 

_anal qty  is greater zero the module generates a write control signal ( _wE qty ) which 

forces the _anal qty  value and the time-window sequence value, w , into memory.  

During the analysis phase, the pass  signal is also used to manage which bin indices are 

stored. Each time a bin’s calculated energy meets its designated threshold, ( )H b , the 

algorithm generates a separate write control signal ( _wE ROI ) to ensure its index, b , is 

captured in memory.  

D. DATA MANAGEMENT 

The final stage of this SDR design utilizes analysis data from the Bin Threshold 

Analysis control module to determine which FFT data points are read from temporary 

memory and then stores them in a final compressed format. Figure 27 shows the three 

principle control modules used to facilitate the process: Header Generator, Temp Data 

Control, and Output Format. Although not shown, the Temporary FFT Data Storage 

module is another integral component that will be discussed in this Data Management 

section. 
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Figure 27.  Control Module: Data Formatting. 

1. Control Module: Temporary FFT Data Storage 

As mentioned in Section III.B, every FFT data point is stored in temporary 

memory until its bin analysis is completed. The Temporary FFT Data Storage control 

module uses the _ _wE temp fft  control algorithm, a concatenation block, and two dual-

port RAM modules to manage the addressing scheme. The physical connections between 

the modules can be seen in Figure 28. 
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Figure 28.  Control Module: Temporary FFT Data Storage. 

The _ _wE temp fft  control algorithm is designed using MATLAB-code to 

ensure every valid FFT signal is stored in an indexed memory address 

( _ _addr wE tmp ). The indexing scheme is based on each signal's time-window 

sequence value, w , and the FFT index, k . These parameters are associated with two 

binary words that are concatenated to generate the final address.  The most significant 

word ( 1_ _addr wE tmp ) is a function of the signal's FFT sequence number ( v ),  

 1_ _ 1addr wE tmp v= −  (IV.14) 

It is important to note that v  is different than the index m , which represents the 

continuously incrementing FFT period number. The FFT sequence numbers begin at one 

and increment to a maximum value ( maxv ) before starting again at one. maxv  is a function 

of the number of FFT periods per time-window, M ,  and the constant used to control 

address rollover, R .  

 1maxv MR= −  (IV.15) 

The index scheme’s second word ( 2_ _addr wE tmp ), relays information about each 

signal’s position in an -pointN  FFT.  

 2_ _ 1addr wE tmp k= −  (IV.16) 
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The values for 2_ _addr wE tmp  begin at zero and are incremented to a maximum value 

of 1N − . The two address components generated by _ _wE temp fft  are routed to a 

SysGen concatenation block, which generates the memory location for each FFT signal  

 1 2_ _ ( , ) [ _ _ , _ _ ]addr wE tmp v i addr wE tmp addr wE tmp= . (IV.17) 

Every time a valid address is generated, the algorithm sets the _tmp wE  flag equal to 

one. Notice in Figure 28 that the same address is used for two separate memory blocks, 

one for real FFT values and the other for the imaginary components.  

2. Control Module:  Header Generation 

When the _bin analysis  control algorithm generates a _wE qty  signal, it is an 

indication that all ROIs  in a bin set have been analyzed and the system has stored the 

data required to control the compression algorithm. As discussed in Section III.E, the 

compressed data set requires a header. The Header Generation control module generates 

headers using three FIFO memory blocks, two delay elements, and the two control 

algorithms ( _ _hdr st mgr  and _hdr out ), shown in Figure 29. 

 

Figure 29.  Control Module: Header Generation. 
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a. Control Algorithm: hdr_st_mgr 

Whenever the design has data being written to final output memory, the  

_tmp busy  control flag is set equal to one as an indicator. Although the _wE qty  signal 

indicates that a bin set is ready for compression and storage, if the Header Generation 

control module started generating a new header while _tmp busy  and _wE qty  signals 

are both one, a data collision would occur at the final output memory. To prevent this 

from happening the _ _hdr st mgr  control algorithm was designed using MATLAB code 

to monitor both signals and generate a control flag, _hdr fl , which initiates the header 

generation for a newly processed bin set.  Based on the cases outlined in Table 6, the 

control algorithm generates the appropriate value for the _hdr fl  flag.  

Table 6.  Control Algorithm: hdr_st_mgr. 

_wE qty  _tmp busy  _hdr fl  Response 

0 0 0 

0 1 0 

1 0 Pulsed high immediately. 

1 1 Pulsed high as soon as _tmp busy returns to zero. 

 
 

b. Control Algorithm: hdr_out 

When the _hdr fl  is set equal to one, the system is ready to start 

generating a new header for the most recently processed bin set. The _hdr out  control 

algorithm was designed using MATLAB code to read analysis data from the appropriate 

storage modules and generate the header, ( )whdr , as described in Eq. (III.19).  When the 

algorithm receives the _hdr fl  signal, it also receives the time-window sequence 

number, w , which is the first data element appended to the header. During that same 

clock cycle, the module receives the control signal that represents the number of bins that 
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met threshold requirements for the bin set, ( )_anal qty w . This datum is the second 

element appended to the header and it also controls the number of qualifying bin indices 

read out of the analysis memory. To manage the process, the algorithm generates a read 

enable signal ( _ _rE ROI hdr ) for ( )_anal qty w  sequential clocks. This ensures the 

appropriate data are read out of memory and appended to the header’s fourth segment, 

which represents the bin indices that met threshold requirements, ( )_ wanal ROI . The 

third element of the header is the flag that dictates the design’s operating mode for the bin 

set analysis, ( )_pri fl w . When the last header bit is generated, the _hdr out  control 

algorithm indicates the fact by setting the _tmp fl  control signal active-high. During the 

entire period that ( )whdr  data are being generated, the algorithm sets the _hdr val  

control signal equal to one as an indicator. The signal is used in the final stage to control 

the data output format. 

3. Control Module:  Temporary Data Read Control 

With the header fully generated, the design is primed to read a subset of FFT data 

from temporary memory so it can then be stored in final output memory. To control the 

reading process the Temporary Data Read Control module, shown in Figure 30, is 

designed using three FIFO memory elements, two RAM modules for ROI  Control 

memory, a concatenation block, and the _rE temp  control algorithm. 
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Figure 30.  Control Module: Temp Data Read Control. 

The _rE temp  algorithm is designed using MATLAB code to evaluate analysis 

data for the purpose of selecting which FFT data to read out of temporary memory. When 

the algorithm receives the flag that indicates the last header bit has been generated, 

_tmp fl , it sets two distinct read enable signals to one, _rE qty  and _ _rE ROI tmp . The 

algorithm sets _rE qty  high once per bin set, in order to control when the number of  

bins that met threshold requirements for the bin set, ( )_anal qty w  and the time-window 

index, w , values are read from memory. The _ _rE ROI tmp  signal controls when each 

qualifying bin index, b , is read from memory. It is asserted a total of ( )_anal qty w  

times per bin set. 

Based on analysis data, the _rE temp  control algorithm generates the addresses 

( _ _addr rE tmp ) from which FFT data are read out of Temporary FFT Data Storage. 

Similar to _ _wE temp fft , the algorithm’s addressing scheme is based upon two binary 

words. The most significant word, 1_ _addr rE tmp , is defined as a function of the time-

window sequence number, w , the number of FFT periods per time-window, M , and the 

FFT sequence number, v . 

 1_ _addr rE tmp wM v= +  (IV.18) 
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The least significant word, 2_ _addr rE tmp , is a function of the desired position in the 

pointN − FFT.  The full address is a concatenation of the two binary words  

 1 2_ _ [ _ _ , _ _ ]addr rE tmp addr rE tmp addr rE tmp=  (IV.19) 

During the entire period that _ _addr rE tmp  data are being generated, the algorithm sets 

the _tmp val  control signal equal to one as an indicator. This signal is used in the final 

Output Format control module to facilitate the data formatting process. 

4. Control Module:  Output Format 

The final stage of this SDR design is the Output Format control module. The 

module is responsible for packaging the header and the compressed FFT data and then 

routing them to final output memory. This last stage also generates the _mem fl  flag, 

which indicates the status of available output memory. The components required to 

design the module are shown in Figure 31 and include a concatenation block, a 

multiplexer, an inverter, a FIFO memory element, a logical comparator, and a relational 

comparator. 

 

Figure 31.  Control Module: Output Format. 

The primary purpose of the module is to route and store bin set headers, ( )whdr , 

and compressed FFT data, ( )out wX  and ( )out wY , to the same final output memory 

element. Both data types are routed through a single multiplexer so the control signal that 

indicates valid header data, _hdr valid , is used to determine which type is passed to the 

MUX output.  It is important to note that before FFT data are routed to the MUX, the real 

and imaginary components are concatenated. The real component is used as the most 
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significant word so that final data format is as described in Eq. (III.20). As data passes 

through the MUX to final memory the _hdr valid  and a delayed _tmp val  signals serve 

as write enable controls.  The _tmp val  signal is generated in the rE_tmp  control 

algorithm to indicate that a valid temporary storage address has been generated. This 

algorithm uses a delayed version of the signal to compensate for the clock delay between 

the address generation and subsequent data output that is read from the Temporary FFT 

Data Storage control module.  In order to read stored data out of this final stage of the 

design, an external source must provide an active high signal to the _rE final  input node 

shown in Figure 31. 

The Output Format control module is also designed to generate the _mem fl  flag, 

which provides an indication of available memory capacity. The SysGen FIFO module 

has a % full  output port, which indicates the percentage of memory in use at any given 

time. This signal is routed to the comparator and evaluated against an operator-defined 

memory threshold (U ). If the percentage of memory in use is greater than this threshold, 

_mem fl  is set to one, otherwise it is zero. 

 
1,  %  

_
0,  %

full U
mem fl

full U
>⎧

= ⎨ <⎩
 (IV.20) 

E. SUMMARY  

This chapter provided specific details as to how the SDR conceptual design model 

was implemented using SysGen software. Each design element is described in terms of 

its functional purpose and operational mechanics.  Three different categories of design 

elements are described: SysGen IP cores (modules); control algorithms, which are 

defined using MATLAB code; and control modules, which are interconnected 

compilations of the two. As described in Chapter III, the primary control modules are the 

FFT, Bin Energy Calculation, Bin Threshold Analysis, and Data Management modules. 

Each primary control module was built using a combination of SysGen modules, control 

algorithms and sub-control modules. The following chapter explains the tests used to 

validate the designed SDR’s functional operation. The chapter also provides test results 

and analysis. 
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V.  DESIGN TESTING 

In order to validate the SDR’s operational capability, it was necessary to verify 

the scaling requirements and its functional mechanisms. To evaluate the scaling 

properties, the design was built and tested using two separate versions. The first utilized 

an 8-point FFT and the second was built with a 1024-point FFT. The functional results of 

the two versions are captured throughout this chapter. There were three essential 

functional operations that required testing:  

1. If an IF signal containing a single frequency is applied to the SDR’s input for 

varying durations in a time-window, can the system properly calculate the 

associated energy and then generate the appropriate compressed output? 

2. If an IF signal containing multiple frequencies is applied to the SDR’s input for 

varying durations in a time-window, can the system properly calculate the energy 

in the different frequency bands and then generate the appropriate compressed 

output? 

3. If available output memory drops below the threshold of 1-U , can the system 

adjust its output so that a maximum of pris  bins are included in the ( )wOut  data 

vector? 

The test procedures developed for the three functional areas are described in the 

following sections.  All the tests were conducted using the SysGen SDR model and 

digitally generated signals. The design’s outputs were captured electronically and then 

processed with a MATLAB file (M-file). The M-file decompressed the output data and 

generated the plots that are included below.   

A. SINGLE FREQUENCY INPUT TEST 

In order to verify the SDR’s response to single frequency input signals, a 

sinusoidal signal, [ ]IF n ,  was applied to the system input for varying durations of the test 

cycle. The test cycle was defined as three time-window periods, 3T , and the time-
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window, T , was defined as three FFT periods, 3M = . To simplify analysis of the test 

results the period of the input signal was set equal to one FFT period.  During the first 

time-window, the sinusoid was applied to the system input for one FFT period. During 

the second time-window, the signal was applied for 2 minT . During the third and final 

time-window, the signal was applied for 3 minT . To test the design, a bin was defined such 

that its ROI  was equal to the digital frequency of the input signal. The bin’s energy 

threshold, ( )1H , was set equal to the energy contained in two minT  periods, of the 

sinusoid, ( )1 0.0312H = . Based on these established bin parameters and the applied 

input signal, the SDR should only calculate a bin energy equal to or above the threshold 

for the last two time-windows. As a result, the system’s output should only contain FFT 

data for the last two time-windows. After decompressing the output data stream and 

evaluating its inverse Fast Fourier Transform (IFFT), the resulting waveform, ( )kC , 

should be identical to the input except for during the first time-window. To clarify, 

decompression involves inserting zeros into all the FFT indices not included in the bin 

set’s output, ( )wOut , and storing the new data set in the vector ( )kD . Therefore, ( )kC  is 

the IFFT of ( )kD  

   ( ) ( )IFFT D kk = ⎡ ⎤⎣ ⎦C      (V.1) 

As mentioned above, the first time-window of ( )kC  should be a constant zero 

since the energy in that time-window is below the required threshold.  

1. 8-Point FFT 

This process was first tested using an 8-point FFT and one of three digital 

frequencies ( 1,  2,  or 3k k k= = = ). The results are captured in Figure 32 through Figure 

35. In each figure, the top plot depicts the input signal [ ]IF n  and the bottom plot 

represents the decompressed IFFT of the design’s output. In Figure 32, the digital input  
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frequency is set so that 1k = . The SDR was setup to evaluate that same digital frequency, 

so the bin’s ROI  vector is ( ) [ ]1 1=ROI , its vector of FFT indices is ( ) [ ]1 1=L , and its 

threshold is set so that ( )1 0.0312H = .  

 

Figure 32.  Single Frequency Input Test ( N = 8 / k  = 1  / ROI = 1 ). 

As explained in the previous section, the established threshold dictates that at 

least two  minT   periods of the proper frequency are present, per time-window, for a bin to 

exceed its energy threshold. If the bin exceeds its threshold then its frequency 

components should be represented in the IFFT of the decompressed system output, 

( )C k .   

The top plot in Figure 32 illustrates that during the first time-window the input 

signal is only present for one minT  period. Since this time-window doesn’t contain 

sufficient energy, the bin’s frequency component is not represented in the bottom plot 

during the first time-window of  ( )C k . For the last two time-windows, since two or more  

minT  periods are present for the input signal, bin requirements are met, and its frequency 
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components are represented in the associated ( )C k  time-windows. Based on this 

analysis, the design compressed a single frequency input signal as intended. 

In Figure 33, the digital input frequency is set so that 2k = . For this test the SDR 

was setup to evaluate that same digital frequency, so the bin’s  ROI  vector is 

( ) [ ]1 2=ROI , its vector of  FFT indices is ( ) [ ]1 2=L , and its threshold is set so that 

( )1 0.0312H = .  

 

  
Figure 33.  Single Frequency Input Test ( N  = 8 / k  = 2  / ROI = 2 ). 

As in the previous test, the top plot illustrates that during the first time-window 

the input signal is only present for one minT  period. Since this time-window doesn’t 

contain sufficient energy, the bin’s frequency component is not represented in the bottom 

plot during the first time-window of  ( )C k . For the last two time-windows, since two or 

more minT  periods are present for the input signal, the bin requirements are met, and its 

frequency components are represented in the associated ( )C k  time-windows. Based on 

this analysis the design compressed a single frequency input signal as designed. 
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In Figure 34, the digital input frequency is set so that 3k = . For this test the SDR 

was setup to evaluate that same digital frequency, so the bin’s  ROI  vector is 

( ) [ ]1 3=ROI , its vector of  FFT indices is ( ) [ ]1 3=L , and its threshold is set so that 

( )1 0.0312H = .  

 
Figure 34.  Single Frequency Input Test ( N  = 8  / k  = 3  / ROI = 3 ). 

As in the two previous tests, the top plot illustrates that during the first time-

window the input signal is only present for one minT  period. Since this time-window 

doesn’t contain sufficient energy, the bin’s frequency component is not represented in the 

bottom plot during the first time-window of  ( )C k . For the last two time-windows, since 

two or more minT  periods are present for the input signal, the bin requirements are met, 

and its frequency components are represented in the associated ( )C k  time-windows. 

Once again, the design compressed a single frequency input signal as designed. 

The final single-frequency test was setup slightly different than the first three. 

Instead of evaluating the digital frequency of the input signal, the system was setup to 

evaluate another digital frequency. In Figure 35, the digital input frequency is set so that 
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1k = . For this test the SDR was setup to evaluate 3k = , so the bin’s  ROI  vector is 

( ) [ ]1 3=ROI , its vector of FFT indices is ( ) [ ]1 3=L , and its threshold is set so that 

( )1 0.0312H = .  

 

Figure 35.  Single Frequency Input Test ( N  = 8  / k  = 1  / ROI = 3 ). 

The input signal is applied in the same fashion as in the first three tests. However, 

since the design is setup to evaluate a frequency that was not present for any duration of 

the test period, the defined bin never contains sufficient energy and its frequency 

component is never represented in ( )C k . Once again, the design compressed the single 

frequency input signal as intended. 

Based on the four tests described above, the results captured in the Figure 32 

through Figure 35 indicate that the SDR responded as intended and is capable of handling 

single frequency input signals. Although the design operated as expected, it has a 

performance limitation that should be recognized and considered. All of the development 

tests were conducted such that the [ ]IF n  signal was a sinusoid with an integer number of 

cycles per N samples.  If the sinusoid did not have an integer number of cycles per N 
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samples, then the FFT would not have all its energy at one digital frequency, although 

most of its energy would be in the indices most closely associated with the frequency of 

the input. Since some of the energy could fall into different bins, results that are very near 

the threshold might turn out differently if the sinusoid is not an integer number of cycles 

per FFT period.   

For example, if an input signal, [ ]IF n , with a digital frequency of 1.5k =  were 

used in the tests above and the sample frequencies were aligned, signal energy would be 

distributed over all digital frequencies, but with 51% at 1k =  and 36% at 2k = . As a 

result, the result might be different from the first example if the bin energy was close to 

the bin energy threshold.  If this response is unacceptable, the effect can be minimized by 

increasing the SDR’s frequency resolution. As described in Section II.A, this is 

accomplished by increasing the FFT period. If this is not a viable option or doesn’t 

completely resolve the issue, then the operator must be especially thoughtful as to how 

bins are defined and thresholds established.  

The tests also assumed that the sampled input signal and the SDR shared the same 

sample frequency. Although the design’s sample frequency can be set to ensure this 

situation exists, it is not a requirement.  The [ ]IF n  signal is sampled by an external 

system and then routed to this design’s input ports. If there were a sample rate mismatch, 

the SDR would need to incorporate interpolation or decimation to address the issue.  

2. 1024-Point FFT 

The single frequency input test above was also applied to a version of the design 

that utilized a 1024-point FFT and digital frequencies 1,  3,  or 5k k k= = = . The results of 

the second round of tests are captured in Figure 36 through Figure 39. Similar to earlier 

testing, the bin thresholds were established so that in order for a bin to meet its 

requirement at least two minT  periods of the proper frequency had to be applied to the 

system input during the associated time-window. If the bin meets its threshold 

requirements then its frequency components should be represented in the IFFT of the 

decompressed system output, ( )C k .   



 72

For the test results illustrated in Figure 36 the digital input frequency was set so 

that 1k = . The SDR was setup to evaluate that same digital frequency, so the bin’s  ROI  

vector was ( ) [ ]1 1=ROI , its vector of FFT indices was ( ) [ ]1 1=L , and its threshold was 

set so that ( )1 0.0312H = .  

 
Figure 36.  Single Frequency Input Test ( N = 1024  / k  = 1  / ROI = 1 ). 

The top plot in Figure 36 illustrates that during the first time-window the input 

signal is only present for one minT  period. Since this period doesn’t contain sufficient 

energy, the bin’s frequency component is not represented in the bottom plot during the 

first time-window of  ( )C k . For the last two time-windows, since two or more minT  

periods are present for the input signal, the bin requirements are met, and its frequency 

components are represented in the associated ( )C k  time-windows. Based on this 

analysis the design compressed a single frequency input signal as designed. 

In Figure 37, the digital input frequency is set so that 3k = . For this test the SDR 

was setup to evaluate that same digital frequency, so the bin’s  ROI  vector was 

( ) [ ]1 3=ROI , its vector of  FFT indices was ( ) [ ]1 3=L , and its threshold was set so that 

( )1 0.0312H = .  
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Figure 37.  Single Frequency Input Test ( N  = 1024  / k  = 3  / ROI = 3 ). 

As in the previous test, the top plot illustrates that during the first time-window 

the input signal is only present for one minT  period. Since this time-window doesn’t 

contain sufficient energy, the bin’s frequency component is not represented in the bottom 

plot during the first time-window of  ( )C k . However, for the last two time-windows, 

since two or more minT  periods are present for the input signal, the bin requirements are 

met, and its frequency components are represented in the associated ( )C k  time-

windows. Based on this analysis, the design compressed a single frequency input signal 

as intended. 

In Figure 38, the digital input frequency is set so that 5k = . For this test the SDR 

was set up to evaluate that same digital frequency, so the bin’s  ROI  vector was 

( ) [ ]1 5=ROI , its vector of  FFT indices was ( ) [ ]1 5=L , and its threshold was set so that 

( )1 0.0312H = .  
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Figure 38.  Single Frequency Input Test ( N  = 1024  / k  = 5  / ROI = 5 ). 

As in the two previous tests, the top plot illustrates that during the first time-

window the input signal is only present for one minT  period. Since this time-window 

doesn’t contain sufficient energy, the bin’s frequency component is not represented in the 

bottom plot during the first time-window of  ( )C k . However, for the last two time-

windows, since two or more minT  periods are present for the input signal, the bin 

requirements are met, and its frequency components are represented in the associated 

( )C k  time-windows. Based on this analysis the design compressed a single frequency 

input signal as intended. 

The final single-frequency test was setup so that system did not evaluate the 

digital frequency of the input signal.  In Figure 39, the digital input frequency is set so 

that 1k = . For this test the SDR was setup to evaluate 5k = , so the bin’s  ROI  vector 

was ( ) [ ]1 5=ROI , its vector of FFT indices was ( ) [ ]1 5=L , and its threshold was set so 

that ( )1 0.0312H = .  
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Figure 39.  Single Frequency Input Test ( N  = 1024  / k  = 1  / ROI = 5 ). 

The input signal is applied in the same fashion as in the first three tests. However, 

since the design is setup to evaluate a frequency that was not present for any duration of 

the test period, the defined bin never contains sufficient energy and its frequency 

component is never represented in ( )C k . Once again, the design compressed the single 

frequency input signal as designed. 

Based on the four test described in this section, the results captured in the Figure 

36 through Figure 39 indicate that the SDR responded as intended. The frequency 

alignment issues mentioned in the previous section apply to this test sequence as well. 

B. MULTI-FREQUENCY INPUT TEST 

In order to test the design’s functional response to multi-frequency inputs, a few 

variations were made to the single frequency input test. Instead of [ ]IF n  containing one 

frequency component, the signal was reconstituted to include two different single 

frequency components ( 1IF  and 2IF ).  
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   [ ] [ ] [ ]1 2IF n IF n IF n= +     (V.2) 

For a series of tests, the digital frequencies of the two components were set equal 

to one of three values. Although the duration of 1IF  and 2IF  were identical to each other 

throughout the test cycle, they were different for each time-window. As in the previous 

tests, during the first time-window the signals were applied for, minT ; during second time-

window, they were applied for 2 minT , and during third time-window they were applied for 

3 minT .   

Another change to the single input test involved adding a second bin to the 

analysis process. For the new series of tests, the ROIs  were set to evaluate two of the 

three optional input frequencies. The bin thresholds (1)H  and (2)H  were setup in a 

fashion similar to the single input tests. In order for a bin to meet its threshold, two  minT  

periods of the proper input frequency had to be applied during a time-window. Therefore, 

during any time-window that either bin’s calculated energy meets its energy threshold, 

the bin’s associated frequency component should be represented in the resulting  ( )C k  

waveform.  

1.  8-Point FFT 

The SDR’s multi-frequency functionality was tested first using an 8-point FFT 

and digital frequencies ( 1,  2,  or 3k k k= = = ). The individual test results are captured in 

Figure 40 through Figure 43 Although the figures are similar to the results from the 

single frequency tests, an extra plot was generated for each iteration. The top plots depict 

the two single frequency components that constitute the [ ]IF n  signal. The middle plots 

represent the actual input signals [ ]IF n , and the bottom plots represent the decompressed 

IFFT of the design’s output, based on the specified ROIs .  

For the test results illustrated in Figure 40, the digital input frequencies were 

1k =  and 2k =  and the SDR was setup to evaluate both frequencies in separate bins. 

The parameters for the first bin were as follows: its range of digital frequencies, 
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( ) [ ]1 1=ROI ; the vector of associated FFT indices, ( ) [ ]1 1=L ; and its threshold, 

( )1 0.0312H = .  For the second bin: ( ) [ ]2 2=ROI ; ( ) [ ]2 2=L ; and ( )2 0.0312H = . 

 
Figure 40.  Multi-Frequency Input Test ( N  = 8  / k  = [1,2]  / ROI = [1,2] ). 

The top plot illustrates that during the first time-window both frequency 

components were present for one minT  period. Since this did not satisfy the energy 

threshold requirements for either bin, neither frequency component is represented in the 

first time-window of the bottom plot. During the second time-window, the input signal 

contained two minT  periods of each input frequency component. Since this satisfied both 

bins’ energy thresholds, both frequency components are represented in the second time-

window of ( )C k . For the final time-window, the three minT  periods of each input 

frequency exceeded the two bin thresholds. As a result, both frequency components are 

represented in the last time-window of the output waveform. Based on this analysis the 

design compressed a multi-frequency input signal as designed. 

For the test results illustrated in Figure 41, the digital input frequencies were 

1k =  and 3k = . The SDR was setup to evaluate the frequencies 1k =  and 2k =  in 
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separate bins. As in the previous test, the two sets of bin parameters were as follows: 

( ) [ ]1 1=ROI ; ( ) [ ]1 1=L ; ( )1 0.0312H = ; ( ) [ ]2 2=ROI ; ( ) [ ]2 2=L ; and 

( )2 0.0312H = . 

 

 
Figure 41.  Multi-Frequency Input Test ( N  = 8  / k  = [1,3]  / ROI = [1,2] ). 

The top plot illustrates that during the first time-window 1k =  and 3k =  input 

frequency components were present for one minT  period. During that period, the energy 

calculated for the first bin did not meet the threshold, so the associated frequency 

component is not present in the processed output signal.  During the second time-

window, the input signal consisted of two minT  periods of the 1k =  frequency 

component. Since this satisfied the first bin’s energy threshold, the frequency component 

is represented in the second time-window of ( )C k . For the final time-window, there are 

three minT  periods of the 1k =  input frequency component. This exceeded the first bin’s 

established threshold, so the frequency component is represented in the last time-window 

of the output waveform. Unlike previous analysis, the second bin was set to evaluate 

2k = , which was never applied to the input. As a result the bin’s energy calculations 
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were constantly zero and the frequency component is never represented in the bottom 

plot.  Based on the analysis of this test, the design compressed a multi-frequency input 

signal as desired. 

For the test results illustrated in Figure 42, the digital input frequencies were 

1k =  and 2k = . The SDR was setup to evaluate the frequencies 1k =  and 3k =  in 

separate bins. The two sets of bin parameters for the test were as follows: for the first bin 

( ) [ ]1 1=ROI , ( ) [ ]1 1=L , and ( )1 0.0312H = ; and for the second bin ( ) [ ]2 3=ROI , 

( ) [ ]2 3=L , and ( )2 0.0312H = . 

 

 
Figure 42.  Multi-Frequency Input Test ( N  = 8  /k  = [1,2]  / ROI = [1,3] ). 

The top plot illustrates that during the first time-window 1k =  and 2k =  input 

frequency components were present for one minT  period. As in all the previous test the 

first bin did not meet its threshold during this period, so the associated frequency 

component is not present in the output during the first time-window.  During the last two 

time-windows, the input signal contained two or more minT  periods of the 1k =  

frequency component. Since the associated calculations led to energy values that met 
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threshold requirements, the frequency component is represented in the last two time-

windows of ( )C k . The frequency component for the second bin was never applied to the 

input for this test, so its energy calculations were constantly zero. As a result, the 

frequency component is never represented in the bottom plot. Based on the analysis of 

this test, the design compressed a multi-frequency input signal as desired. 

For the test results illustrated in Figure 43, the digital input frequencies were 

1k =  and 3k = . However, the SDR was setup to evaluate two unrelated frequencies 

2k =  and 4k = , in separate bins. The two sets of bin parameters for the test were as 

follows: for the first bin ( ) [ ]1 2=ROI , ( ) [ ]1 2=L , and ( )1 0.0312H = ; and for the 

second bin ( ) [ ]2 4=ROI ; ( ) [ ]2 4=L ; and ( )2 0.0312H = . 

 

 
Figure 43.  Multi-Frequency Input Test ( N  = 8  / k  = [1,3]  / ROI = [2,4] ). 

As in previous tests, the top plot illustrates that 1k =  and 2k =  input frequency 

components were applied for varying durations in each of the time-windows. However, 

since the frequency components defined for the two bins ( 2k =  and 4k = ) were never 

applied to the input for this test, all energy calculations were equal to zero. As a result, 
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neither frequency component is represented in the bottom plot. Based on the analysis of 

this test, the design compressed a multi-frequency input signal as desired.  

Based on the four tests described in this section, the results captured in Figure 40 

through Figure 43 indicate that the SDR responded as desired and is capable of handling 

multi-frequency input signals. The frequency alignment issue that was described in the 

single-frequency testing Section, V.A.1, also impacts this test sequence.  

2.  1024-Point FFT 

The multi-frequency test was also applied to the 1024-point version of the design. 

For the second set of tests, digital frequencies 1,  3,  or 5k k k= = =  were used in varying 

combinations and the results are captured in Figure 44 through Figure 47. 

For the test results illustrated in Figure 44 the digital input frequencies were 1k =  

and 3k =  and the SDR was setup to evaluate both frequencies in separate bins. The 

parameters for the first bin were as follows: its range of digital frequencies, 

( ) [ ]1 1=ROI ; the vector of associated FFT indices, ( ) [ ]1 1=L ; and its threshold, 

( )1 0.0312H = .  For the second bin: ( ) [ ]2 3=ROI , ( ) [ ]2 3=L , and ( )2 0.0312H = . 

 
Figure 44.  Multi-Frequency Input Test ( N  = 1024  / k  = [1 , 3]  / ROI =[1 , 3] ). 
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The top plot illustrates that during the first time-window both frequency 

components were present for one minT  period. Since this did not satisfy the energy 

threshold requirements for either bin, neither frequency component is represented in the 

first time-window of the bottom plot. During the second time-window, the input signal 

contained two minT  periods of each input frequency component. Since this satisfied both 

bins’ energy thresholds, both frequency components are represented in the second time-

window of ( )C k . For the final time-window, the three minT  periods of each input 

frequency exceeded the two bin thresholds. As a result, both frequency components are 

represented in the last time-window of output waveform. Based on this analysis the 

design compressed a multi-frequency input signal as desired. 

For the test results illustrated in Figure 45, the digital input frequencies were once 

again 1k =  and 3k = , but the SDR was setup to evaluate the frequencies 1k =  and 

5k =  in separate bins. The two sets of bin parameters were as follows: For the first bin 

( ) [ ]1 1=ROI , ( ) [ ]1 1=L , and ( )1 0.0312H = ; For the second bin ( ) [ ]2 5=ROI ,  

( ) [ ]2 5=L , and ( )2 0.0312H = . 

 
Figure 45.  Multi-Frequency Input Test ( N  = 1024  / k  = [1 , 3]  / ROI = [1 , 5] ). 
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The top plot illustrates that during the first time-window 1k =  and 3k =  input 

frequency components were present for one minT  period. During that period, the energy 

calculated for the first bin did not meet the threshold, so the associated frequency 

component is not present in the processed output signal.  During the second time-

window, the input signal consisted of two minT  periods of the 1k =  frequency 

component. Since this satisfied the first bin’s energy threshold, the frequency component 

is represented in the second time-window of ( )C k . For the final time-window, there are 

three minT  periods of the 1k =  input frequency component. This exceeded the first bin’s 

established threshold, so the frequency component is represented in the last time-window 

of the output waveform. Unlike previous analysis, the second bin was set to evaluate 

5k = , which was never applied to the input. As a result the bin’s energy calculations 

were constantly zero and the frequency component is never represented in the bottom 

plot.  Based on the analysis of this test, the design compressed a multi-frequency input 

signal as desired. 

For the test results illustrated in Figure 46 the digital input frequencies were 3k =  

and 5k =  and the SDR was setup to evaluate both frequencies in separate bins. The two 

sets of bin parameters were as follows: For the first bin ( ) [ ]1 3=ROI , ( ) [ ]1 1=L , and 

( )1 0.0312H = ; For the second bin ( ) [ ]2 5=ROI , ( ) [ ]2 5=L , and ( )2 0.0312H = . 
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Figure 46.  Multi-Frequency Input Test ( N  = 1024  / k  = [3 , 5]  / ROI =[3 , 5] ). 

The top plot illustrates that during the first time-window both frequency 

components were present for one minT  period. Since this did not satisfy the energy 

threshold requirements for either bin, neither frequency component is represented in the 

first time-window of the bottom plot. During the second time-window, the input signal 

contained two minT  periods of each input frequency component. Since this satisfied both 

bins’ energy thresholds, both frequency components are represented in the second time-

window of ( )C k . For the final time-window, the three minT  periods of each input 

frequency exceeded the two bin thresholds. As a result, both frequency components are 

represented in the last time-window of the output waveform. Based on this analysis the 

design compressed a multi-frequency input signal as desired. 

For the test results illustrated in Figure 47, the digital input frequencies were 

again 3k =  and 5k = , but the SDR was setup to evaluate 2k =  and 4k = , in separate 

bins. The two sets of bin parameters were as follows: For the first bin ( ) [ ]1 2=ROI , 

( ) [ ]1 2=L , and ( )1 0.0312H = ; For the second bin ( ) [ ]2 4=ROI , ( ) [ ]2 4=L , and 

( )2 0.0312H = . 
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Figure 47.  Multi-Frequency Input Test ( N  = 1024  / k  = [3 , 5]  / ROI = [1 , 4] ). 

As in previous tests, the top plot illustrates that 3k =  and 5k =  input frequency 

components were applied for varying durations in each of the time-windows. However, 

since the frequency components defined for the two bins ( 2k =  and 4k = ) were never 

applied to the input for this test, all energy calculations were equal to zero. As a result, 

neither frequency component is represented in the bottom plot. Based on the analysis of 

this test, the design compressed a multi-frequency input signal as desired.  

Based on the four test described in this section,  the results captured in Figure 44 

through Figure 47 indicate that the SDR responded as desired and is capable of handling 

multi-frequency input signals.  

C. MEMORY COMPENSATION TEST 

The last functional test requires restricting the available output memory and 

verifying that the system is able to adjust the data output scheme accordingly. In order to 

simulate restrictions on output memory, the multi-frequency test was used with a few 

changes to design parameters: Capacity for the final output memory was reduced to hold 
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only 32 data points; the read-enable control signal, _rE final , was set to zero for 

prolonged periods so that no data could be read from memory; the memory threshold, U , 

was set to 25%; the ROIs  used for analysis were matched to the input frequency 

components; and finally, input sinusoids were present throughout the test period so that 

both bins would exceed their established energy thresholds during all three time-

windows.  

The memory compensation test was run three times using the 1024-point version 

of the design. Results from each memory capacity test include a total of six plots, and are 

illustrated in Figure 48 through Figure 50. The top plots depict the two single frequency 

components that constitute the [ ]IF n  signal. The second plots represent the actual input 

signal [ ]IF n . The third plot represents the status of the read-enable signal, during the 

associated time-window input period. Since there is a delay ( _proc del ) between the 

input signal and storage of related data points, the indices (τ ) for these plots are adjusted 

to visually align with the relevant input and data storage periods.  

   _t proc delτ = +      (V.3) 

For the 1024-point version of the design, the _proc del  =3072. The next two plots are 

also functions of τ . The fourth plot represents the output memory capacity, % full , 

relative to a time-window input period. The fifth plot depicts the status of the ( )_pri fl w  

control signal, which determines the design’s operating mode; described in Section 

IV.B.3.f.  The sixth and last plot reveals the decompressed IFFT of the system’s output, 

( )C k . Under normal operating conditions, the system should store the data points for 

both bins. However, when memory capacity is limited with respect to U , the system 

should only store data for the first bin. 

The first iteration of the memory compensation test was setup as a baseline to 

demonstrate the system’s output in the default operating mode. For this test, the digital 

input frequencies were 1k =  and 3k =  and the SDR was setup to evaluate both 

frequencies in separate bins. The parameters for the first bin were as follows: the range of 
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digital frequencies, ( ) [ ]1 1=ROI ; the vector of associated FFT indices, ( ) [ ]1 1=L ; and its 

threshold, ( )1 0.0156H = . For the second bin: ( ) [ ]2 3=ROI , ( ) [ ]2 3=L , and 

( )2 0.0156H = .  Another set of parameters that were important to this test were the 

default, s , and alternate, pris , number of bins that should processed per bin set. For the 

design’s normal operating mode the default was set so that 2s = , and for situations when 

memory capacity exceeded the established threshold the alternate was set so that 1pris = . 

The system and bin parameters defined for this test were used for all three memory 

compensation tests. 
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Figure 48.  SDR Output Memory Compensation (Test 1). 
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The top two plots illustrate the input signal [ ]IF n  and its frequency components.  

Since there are three minT  periods of both frequencies in each time-window, both bins 

meet their energy thresholds for the entire test period. This means that if the ( )_pri fl w  

control signal is zero during a time-window, then both input frequency components 

should be represented in the associated time-window of the final output waveform, 

( )C k .  

Based on the plots in Figure 48, the ( )_pri fl w  was zero for the entire test 

period. As expected, both frequency components were represented in the appropriate 

plots and the system performed as desired. Plots three through five are the key to 

understanding the design’s mechanics.  Since the output memories read enable control 

signal, _rE final , was one for entire test period the data stored never filled more than 

one of the thirty-two available memory locations. This situation ensured that memory 

capacity, % full ,  never exceeded the storage threshold,  U . As a result, the ( )_pri fl w  

was zero for the entire test period and the input signal, [ ]IF n , and final output 

waveform, ( )C k , were a match. 

For the second test, the system and bin parameters were identical to that of the 

first test: The digital input frequencies components were 1k =  and 3k = ; the first bin’s 

parameters were  ( ) [ ]1 1=ROI , ( ) [ ]1 1=L , ( )1 0.0156H = ; the second bin’s parameters 

were ( ) [ ]2 3=ROI , ( ) [ ]2 3=L , ( )2 0.0156H = ; and the number of bins analyzed per 

bin set were a function of 2s =  and 1pris = . The differences in this test are a function of 

changes to the output memory’s read enable control signal, _rE final . The test results 

are captured in Figure 49. 
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Figure 49.  SDR Output Memory Compensation (Test 2). 
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As discussed in the previous test, both bins meet their energy thresholds for all 

three time-windows. This means that for any time-window that the design is operating in 

its default mode, ( )_ 0pri fl w = , the input signal shown in the second plot should be 

identical to the processed output signal shown in the bottom plot. However, for any time-

window in which ( )_ 1pri fl w = , only the 1k =  frequency component should be 

represented in the output waveform’s associated time-window.   

As illustrated in Figure 49, the _rE final  signal was zero for the first time-

window and was then changed to one for the last two time-windows. As a result, the 

compressed FFT data and bin set header for the first time-window occupied more than 

25% of the available output memory. This situation changed the system’s operating mode 

for the second time-window, which is indicated by the fact that ( )_ 2 1pri fl =  for that 

period. Accordingly, the second time-window of ( )C k  only represents the 1k =  

frequency component. Since the _rE final  signal remained high for the duration of the 

test period, the memory usage, % full , remained below the threshold for the last time-

window. As a result, the ( )_ 3pri fl  was zero for the period, the system returned to its 

default operating mode, and both frequency components were represented in the final 

output waveform.  

For the third test, the system and bin parameters were once again identical to that 

of the first test: The digital input frequencies components were 1k =  and 3k = ; the first 

bin’s parameters were  ( ) [ ]1 1=ROI , ( ) [ ]1 1=L , ( )1 0.0156H = ; the second bin’s 

parameters were ( ) [ ]2 3=ROI , ( ) [ ]2 3=L , ( )2 0.0156H = ; and the number of bins 

analyzed per bin set were a function of 2s =  and 1pris = . The differences in this test are 

again a function of changes to the output memory’s read enable control signal, 

_rE final . The test results are captured in Figure 50 . 
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Figure 50.  SDR Output Memory Compensation (Test 3). 
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As in the two previous tests, both bins met their energy thresholds for all three 

time-windows. Therefore, for any time-window in which the design is operating in its 

default mode, ( )_ 0pri fl w = , the input signal shown in the second plot should be 

identical to the processed output signal shown in the bottom plot. However, for any time-

window in which ( )_ 1pri fl w = , only the 1k =  frequency component should be 

represented in the associated period of the final output waveform.   

As illustrated in Figure 50, the _rE final  signal was zero for the first two time-

windows and was then changed to one for the third. As a result, the compressed FFT data 

and bin set header for the first two time-windows occupied more than 25% of the 

available output memory. This situation changed the system’s operating mode for the last 

two time-windows, which is indicated by the fact that ( ) ( )_ 2 _ 3 1pri fl pri fl= = . 

Accordingly, in the last two time-windows of the output waveform, ( )C k , only the 1k =  

frequency component is represented.  

Based on the three tests described in this section, the results captured in Figure 48 

through Figure 50 indicate that the SDR responded as desired and is able to adjust its 

operational mode according to the available output memory. 

D. LESSONS LEARNED  

During the testing process, two notable points were discovered. First, parameter 

changes must be made to key elements when scaling the design’s FFT period.  Second, a 

digital system’s machine epsilon must be considered when processing its output data. The 

concept will be described in Section V.D.2. 

1. Scaling Considerations 

The SysGen FFT module is the most obvious place to start when considering 

elements affected by scaling the points per FFT. In order to adjust the number of data  
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points associated with an FFT period, N , the module provides a dropdown menu 

(Number of sample points) with all the available options.  In Figure 51, the parameter is 

boxed in red.  

 

Figure 51.  FFT Period (Parameter). 

As the FFT period is changed, the 1/ N  scaling factor in the FFT definition, Eq. 

(II.4), must be accounted for in the SDR design. As mentioned in Section IV.A.1, the 

SysGen FFT module’s output was not scaled so the SysGen Scale modules, boxed in 

Figure 52, were used instead. The modules scale numerical values by powers of two, so 

to represent a value of 31/8 2−= , an operator would use the module’s interface to set a 

value of -3. For this design, the value entered in the Scale modules is referred to as scaleN . 

Point being, in order to properly implement the 1/ N  scaling, scaleN , must be manually 

adjusted in both Scaling modules where 

 2log ( )scaleN N= − . (V.4) 
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Figure 52.  Nscale (Parameter). 

Memory capacity is another element of the design that can be greatly affected by 

a change in the FFT period. As N  increases, so do the memory requirements.  As a 

result, considerations must be made regarding the appropriate memory depth for each of 

the design’s storage components. The design uses 11 storage devices to work with the 

system’s analysis data. A complete list is provided in Table 7. 
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Table 7.  Storage Devices (Design Analysis Data). 

Storage Device Type Control Module 

FIFO (Time Wind) Energy (Time Window) 

Dual Port RAM (Freq Wind) Energy (Frequency Window) 

Dual Port RAM (Real Data) Temporary FFT Data Storage 

Dual Port RAM (Imag Data) Temporary FFT Data Storage 

FIFO ( ROI - Header) Header Generation 

FIFO ( w  - Header) Header Generation 

FIFO ( _anal qty  - Header ) Header Generation 

FIFO ( ROI  - Temp Data) Temp. Data Read Control 

FIFO ( w - Temp Data) Temp. Data Read Control 

FIFO ( _anal qty - Temp Data) Temp. Data Read Control 

FIFO (Final Output) Output Format 

 
 

The design’s addressing schemes can also be affected by changes to the FFT 

period. The system utilizes the four addressing algorithms listed in Table 8 to manage 

data storage requirements. Each of them generates an address based on two binary words. 

The least significant word of each algorithm can range from zero to 1N − . This fact 

makes it critically important that each algorithm’s least significant word is defined with 

at least 2log ( )N  bits. 
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Table 8.  Address Generation Algorithms. 

Addressing Algorithm Control Module 

_ _wE time win  Write Enable (Time Window) 

_ _rE freq win  Read Enable (Freq Window) 

_ _wE temp fft  Temporary FFT Data Storage 

_rE tmp  Temporary Data Read Control 

 

2. Machine Epsilon Considerations 

There are varying definitions of machine epsilon, but for fixed-point numbers, 

they all involve determining the smallest positive number that a digital system can 

recognize and generate. When working with fixed-point designs, machine epsilon is a 

function of the number of binary digits that follow the decimal point. For example, if a 

design uses a _ 4 _ 3Fix  arithmetic word (fixed point, four total bits, three after the 

decimal) then the smallest value that can be represented is ( )3
2 1010

0.001 2 0.1250−= = . 

However, if the same design were to use a _ 6 _ 5Fix  arithmetic word (fixed point, six 

total bits, five after the decimal) then the smallest value that could be represented is 

( )5
2 1010

0.00001 2 0.03125−= = . When combined with rounding or truncating, machine 

epsilon can lead to numerical calculations that should mathematically equal zero but 

result in other values. Such is the case with all digital designs. 

To address the issue in the final design, two different solutions were investigated. 

First, the algorithm used to process the design’s output was altered so that it would 

discard any numerical value (real or imaginary) that fell below the design’s machine 

epsilon. In this design, the machine epsilon is determined by the fixed-point binary 

format, _ _ 1Fix D D − , that is used for the inputs to the SysGen FFT module, as 

described in Figure 53. Second, the design was altered and tested with greater binary 
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resolution.  This was done by increasing the number of bits used in each of the system’s 

calculations. All the components affected by changing the binary format are listed in 

Table 9 but as mentioned above the major catalyst for change are the data formats used in 

the realIF  input gateway and the Imag signals illustrated in Figure 53. 

 

Figure 53.  FFT Inputs Requiring Change. 

The two gateways feed directly into the SysGen FFT module and their binary 

resolutions determine the FFT module’s output resolution. For instance, during the first 

round of testing the gateways’ binary format was _12 _11Fix  and the FFT module's 

output format was _16 _11Fix .  For the second round of testing, the gateways’ binary 

format was changed to _ 24 _ 23Fix  and the resulting FFT output format was 

_ 28 _ 23Fix .  This general change in output format ultimately affects each of the design 

elements in Table 9. Therefore, the binary formatting parameters in each must be 

appropriately adjusted. 
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Table 9.  Modules Affected by Changes to Numerical Binary Format. 

Design Element Control Module Considerations 

Gateway In ( realIF ) NA Formats the real component of the input to the FFT module and determines the modules 

output format. (Based on system interface) 

 Imag  NA Formats the imaginary component of the input to the FFT module and determines the 

modules output format. (Based on system interface) 

AddSub Energy  

(Time Window) 

Input to the module comes from the Energy (FFT Index) module. Therefore, the AddSub 

module should have an equal number of bits after the decimal point. To determine the 

number of bits before the decimal, an operator should estimate the maximum value that 

could be calculated in a ( )ine wtE  vector.   

bd_in  (Temp Data) Temp. FFT Data Storage Must match the output format from the FFT module. 

bd_in  (Freq Wind) Energy  

(Freq. Window) 

Must match the output format from the FFT module. 

Accumulator1 Accumulator Control  

(Freq. Window) 

‘Output Precision: Number of Bits’ parameter must match the ‘Binary Point’ parameter 

of the SysGen AddSub module used in the Energy (Time Window) control module 

Accumulator2 Accumulator Control  

(Freq. Window) 

‘Output Precision: Number of Bits’ parameter must match the ‘Binary Point’ parameter 

of the SysGen AddSub module used in the Energy (Time Window) control module 
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Increasing the design’s binary resolution results in reduced machine epsilon, but it 

does not guarantee that calculations will result in the expected zero values. Therefore, 

adjusting the system’s fixed-point formats is only useful if the design’s application 

requires more fidelity.  

E. SUMMARY 

This chapter explains the tests used to validate the SDR’s functional operations 

and scaling requirements. Three functional elements of the system’s response were 

verified:  single frequency input; multi-frequency input; and memory compensation. 

Based on the tests results, the SDR performed as desired. In order to test the design’s 

scaling requirements, it was built and tested with two different FFT periods, 8N =  and 

1024N = . Components affected by the changes in FFT period are captured in Table 7, 

Table 8, and Table 9. Another benefit of the testing process was that the effects and 

workarounds for machine epsilon were realized. Chapter VI summarizes the body of 

work captured in the thesis and then provides recommendations for follow-on work.  
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VI. CONCLUSION 

This chapter provides a summary of the thesis and reviews the major concepts 

that influenced the development of the FPGA-based SDR design. The chapter also 

contains recommendations regarding further research and updates to the final design.  

A. CONCLUSION 

This thesis was conceived to help mitigate the restrictions imposed on FPGA-

based communications radio designs by external IO bandwidth mismatches. The goal was 

to design an FPGA-based SDR that could compress sampled wideband IF signals based 

on reprogrammable parameters. The design was developed around the concept of 

independent, operator-defined time-frequency bins and evaluation of the energy in each 

bin. Although the design concept incorporated bins with varying time-window periods, 

the final design was simplified so that each bin used the same period.  

Xilinx’s System Generator software was utilized to develop and test the 

behavioral definition of the design. The tool was also used to synthesize the design, 

perform the place-and-route functions, and generate the .bin file that provides the 

FPGA’s configuration information. The development tool provided a layer of abstraction 

that reduced the requirement for in-depth of knowledge with respect to HDL coding. If 

the design required management of internal hardware clocks, then the ability to code in a 

HDL would have been more critical. 

The SDR was developed for a Virtex-4 FPGA architecture. While this can 

potentially affect its portability, the SysGen FFT v4.1 module was the only component 

used that is not backward compatible to the Virtex-1.  This issue can be resolved by using 

a different version of the SysGen FFT module and then making minor changes to 

parameters in the _pwr time  control algorithm. 

Two versions of the algorithm were built and tested. The first utilized an 8-point 

FFT, which simplified analysis efforts. The second version utilized a 1024-point FFT and 

helped verify the requirements for scaling the design. Both versions were tested using 
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single and multi-frequency input signals, without restrictions on the output memory. This 

ensured the basic compression scheme operated properly. Then, the 1024-point algorithm 

was used to verify the design automatically adjusted its operations based on the available 

storage capacity. Testing provided valuable insights regarding the effects and 

workarounds for machine epsilon. It also verified the design’s desired functional 

operations. 

Although the final design operated as expected, it has performance limitations that 

should be recognized and considered. All of the development tests were conducted such 

that the digital input frequencies and the defined bin frequencies were an exact match. If 

frequencies that did not match the FFT window, i.e., frequencies that did not have an 

integer number of cycles per FFT window, were used there would be a slight smearing 

effect in the frequency domain.  It is assumed that this effect is minor, and would not 

significantly impact the efficacy of the algorithm. The tests also assumed the input signal 

and the SDR shared the same sample frequency. If this were not the case, the 

implementation could correct for this with interpolation or decimation, or similar 

multirate signal processing. 

B. RECOMMENDATIONS  

The research and development process for this thesis resulted in a simple, FPGA-

based signal compressor. The design facilitates more efficient use of the output capacity 

available to systems affected by external IO bandwidth mismatches. Despite its simple 

nature, the design and its components could be optimized and used as a platform for 

future development efforts.  

The first recommendation would be to address design limitations discussed in 

Chapter V. In order to address issues associated with the input signal and bin frequency 

alignment, larger FFT periods should be utilized. This would increase the design’s 

frequency resolution and reduce the effects of smearing in the frequency domain. In order 

to remove the effects of sample frequency mismatches, the design’s sample frequency 

could be changed. Otherwise, a signal processing module could be added to incorporate 

interpolation and/or decimation. Additionally, the Energy (Time Window) control 
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module only utilizes one control algorithm, pwr_time , to facilitate several different 

processes. A more modular design could improve the overall portability of the SDR. 

In order to improve the design’s operational capabilities, there are three areas that 

are worth exploring. First, the original design concept incorporated time-frequency bins 

with independent time-window periods, but the final design was simplified so that each 

bin shared the same period. This change reduces the design’s ability to evaluate diverse 

modulation techniques simultaneously. Additional development efforts in this area may 

enhance the design’s real world applicability. Next, the design takes the FFT of real 

signal inputs.  The FFT module used accommodates complex inputs.  Future work could 

explore potential design simplification or reduced gate count by using or designing an 

FFT module that only uses real input signals. Finally, the SDR was designed to compress 

input sample data based on evaluation of the energy in each time-frequency (TF) bin. The 

TF construct that was implemented in the final design was based on a simple process. 

Some of the more sophisticated TF analysis methods mentioned in the introduction could 

be tested with the design’s existing functional structure.  
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